Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder
-
摘要: 实验与数值研究了平面激波诱导下双层气柱的演化规律.利用肥皂膜技术生成了3种双层气柱,通过固定内、外层气柱半径,改变内层气柱在流向方向上的位置,研究了双层气柱偏心效应对流场演化的影响.结果表明,当内层气柱向上游偏移时,外层气柱的上游界面在后期会产生朝向上游的"射流";当内层气柱向下游偏移时,下游两道界面会较早地耦合在一起.获得了内、外层气柱上游界面的线性速度,发现压力等因素对内、外层气柱上游界面分别有抑制和促进作用,且作用大小与偏心程度密切相关.稀疏波的作用会明显改变外层气柱上游界面的运动行为,使其线性运动阶段延长或缩短.外层气柱的宽度在偏心时均被促进,高度随着内层气柱靠近下游逐渐减小;内层气柱向上游偏移时,其自身的宽度被抑制,但高度没有明显变化.对双层气柱的界面面积和平均体积分数的定量分析表明内层气柱向上游偏移时会促进物质混合.获得了环量随时间的变化规律,发现在演化早期双层气柱的环量可以通过已有模型的线性叠加得到较好的预测.
-
关键词:
- Richtmyer-Meshkov不稳定性 /
- 双层气柱界面 /
- 肥皂膜技术 /
- 环量模型 /
- 激波管实验
Abstract: Evolution of a double-layer gas cylinder induced by a planar shock wave was investigated experimentally and numerically. Three double-layer gas cylinders were generated based on the soap film technology. By fixing the radii of the inner and outer gas cylinders, and changing the position of the inner gas cylinder in the stream-wise direction, the eccentric effect on the double-layer gas cylinder evolution has been highlighted. The results show that when the inner gas cylinder is positioned upstream, a 'jet' toward the upstream interface of the outer cylinder is generated at the late stage. When the inner gas cylinder is positioned downstream, the coupling effect between two downstream interfaces occurs earlier. The linear velocities of the upstream interfaces of the inner and outer gas cylinders are obtained. It is found that the pressures inhibit and promote the upstream interfaces of the inner and outer gas cylinders respectively, and the pressure magnitude is closely related to the position of the inner cylinder. The rarefaction wave impact changes the movement behaviour of the upstream interface of the outer cylinder, and the linear phase will be prolonged or shortened. The outer gas cylinder width is promoted when the eccentricity exists, and its height gradually decreases as the inner one approaches downstream initially. When the inner gas cylinder is positioned upstream, the inner cylinder width is inhibited but its height changes little. The interfacial area and mean volume fraction of the double-layer gas cylinder were extracted from computations, and the results show that the mixing between gases will be promoted when the inner gas cylinder is positioned upstream. Finally, the time-variation of the circulation is obtained. It is found that the circulation of the double-layer gas cylinder at the early stage can be well predicted by the linear superposition of the existing models. -
表 1 各组工况的物理参数
Table 1. Physical parameters for each case
cases Ma d/mm VF1 VF2 Ⅰ 1.28 -7 0.56 0.07 Ⅱ 1.27 0 0.5 0.05 Ⅲ 1.28 +7 0.5 0.06 表 2 外层气柱上游极点的速度
Table 2. Velocities of the upstream poles of inner and outer cylinders for all cases
cases Vi ΔV VRM V0 Ⅰ-out 96.5 108.1 -35.8 24.2 Ⅱ-out 95.0 105.3 -33.2 22.9 Ⅲ-out 96.1 109.9 -34.3 20.5 Ⅰ-in 133.9 129.3 21.4 -19.5 Ⅱ-in 130.7 125.6 21.7 -16.6 Ⅲ-in 140.5 130.4 21.2 -11.1 表 3 各组工况数值结果的环量值(Γsim)与4种组合模型的环量预测值(环量的单位为m2/s)
Table 3. Comparison of circulations from the numerical simulations (Γsim) and theoretical predictions by the models for each case(the unit of circulation is m2/s)
cases Γsim ΓSZ+ΓPB relative error/(%) ΓSZ+ΓYKZ relative error/(%) ΓPB+ΓYKZ relative error/(%) ΓPB+ΓPB relative error/(%) Ⅰ -5.99 -5.95 0.67 -6.69 11.69 -6.52 8.85 -5.78 3.51 Ⅱ -5.38 -5.36 0.37 -6.05 12.45 -5.70 5.95 -5.02 6.69 Ⅲ -5.58 -5.56 0.36 -6.26 12.19 -5.99 7.35 -5.29 5.20 -
[1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207 [2] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104. [3] Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2): 020501. doi: 10.1063/1.4865400 [4] Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA Journal, 1993, 31(5): 854-862. doi: 10.2514/3.11696 [5] Shimoda J, Inoue T, Ohira Y, et al. On cosmic-ray production efficiency at supernova remnant shocks propaga-ting into realistic diffuse interstellar medium[J]. The Astrophysical Journal, 2015, 803(2): 98. doi: 10.1088/0004-637X/803/2/98 [6] Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 445-468. doi: 10.1146/annurev.fluid.34.090101.162238 [7] Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181: 41-76. doi: 10.1017/S0022112087002003 [8] Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904 [9] Jacobs J W. Shock-induced mixing of a light-gas cylinder[J]. Journal of Fluid Mechanics, 1992, 234: 629-649. doi: 10.1017/S0022112092000946 [10] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2239-2247. doi: 10.1063/1.858562 [11] Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611: 131-150. doi: 10.1017/S0022112008002723 [12] 王兵, 卢梦. Richtmyer-Meshkov不稳定性强化混合参变机理[J]. 气体物理, 2016, 1(6): 5-21. http://qtwl.xml-journal.net/article/id/30db44a4-85b7-4c9e-bf32-c7211c1c29d3Wang B, Lu M. Mixing-enhancement mechanism of Richtmyer-Meshkov instability at different parameters[J]. Physics of Gases, 2016, 1(6): 5-21(in Chinese). http://qtwl.xml-journal.net/article/id/30db44a4-85b7-4c9e-bf32-c7211c1c29d3 [13] 张赋, 翟志刚, 司廷, 等. 反射激波作用下重气柱界面演化的PIV研究[J]. 实验流体力学, 2014, 28(5): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201405003.htmZhang F, Zhai Z G, Si T, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 13-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201405003.htm [14] Zou L Y, Liao S F, Liu C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Physics of Fluids, 2016, 28(3): 036101. doi: 10.1063/1.4943127 [15] 黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验[J]. 爆炸与冲击, 2017, 37(5): 829-836. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705007.htmHuang X L, Liao S F, Zou L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF[J]. Explosion and Shock Waves, 2017, 37(5): 829-836(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705007.htm [16] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究[J]. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879Li D D, Wang G, Zhang B. Flow and mixing in shock-accelerated elliptic helium gas cylinder process[J]. Acta Physica Sinica, 2018, 67(18): 184702(in Chinese). doi: 10.7498/aps.67.20180879 [17] Wang X S, Yang D G, Wu J Q, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder[J]. Physics of Fluids, 2015, 27(6): 064104. doi: 10.1063/1.4922613 [18] Ding J C, Liang Y, Chen M J, et al. Interaction of planar shock wave with three-dimensional heavy cylindri-cal bubble[J]. Physics of Fluids, 2018, 30(10): 106109. doi: 10.1063/1.5050091 [19] Ding J C, Si T, Chen M J, et al. On the interaction of a planar shock with a three-dimensional light gas cylinder[J]. Journal of Fluid Mechanics, 2017, 828: 289-317. doi: 10.1017/jfm.2017.528 [20] Ou J F, Ding J C, Luo X S, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction[J]. Experiments in Fluids, 2018, 59(2): 29. doi: 10.1007/s00348-018-2492-5 [21] Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Physics of Fluids, 2005, 17(8): 082107. doi: 10.1063/1.2031347 [22] Tomkins C, Prestridge K, Rightley P, et al. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Physics of Fluids, 2003, 15(4): 986-1004. doi: 10.1063/1.1555802 [23] Tomkins C, Prestridge K, Rightley P, et al. Flow morphologies of two shock-accelerated unstable gas cylinders[J]. Journal of Visualization, 2002, 5(3): 273-283. doi: 10.1007/BF03182335 [24] Zhai Z G, Ou J F, Ding J C. Coupling effect on shocked double-gas cylinder evolution[J]. Physics of Fluids, 2019, 31(9): 096104. doi: 10.1063/1.5119003 [25] Zou L Y, Huang W B, Liu C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders[J]. Journal of Fluids Engineering, 2014, 136(9): 091205. doi: 10.1115/1.4026439 [26] 廖深飞, 邹立勇, 黄熙龙, 等. Richtmyer-Meshkov不稳定的双椭圆气柱相互作用的PIV研究[J]. 中国科学: 物理学力学天文学, 2016, 46(3): 034702. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201603006.htmLiao S F, Zou L Y, Huang X L, et al. A PIV study on the interaction of double Richtmyer-Meshkov-unstable elliptic gas cylinders[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(3): 034702(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201603006.htm [27] Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D: Nonlinear Phenomena, 2007, 235(1/2): 21-28. [28] Mikaelian K O. Richtmyer-Meshkov instabilities in stratified fluids[J]. Physical Review A, 1985, 31(1): 410-419. doi: 10.1103/PhysRevA.31.410 [29] Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in multilayer fluids with surface tension[J]. Physical Review A, 1990, 42(12): 7211-7225. doi: 10.1103/PhysRevA.42.7211 [30] Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in finite-thickness fluid layers[J]. Physics of Fluids, 1995, 7(4): 888-890. doi: 10.1063/1.868611 [31] Mikaelian K O. Numerical simulations of Richtmyer-Meshkov instabilities in finite-thickness fluid layers[J]. Physics of Fluids, 1996, 8(5): 1269-1292. doi: 10.1063/1.868898 [32] Budzinski J M, Benjamin R F, Jacobs J W. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer[J]. Physics of Fluids, 1994, 6(11): 3510-3512. doi: 10.1063/1.868447 [33] Jacobs J W, Jenkins D G, Klein D L, et al. Nonlinear growth of the shock-accelerated instability of a thin fluid layer[J]. Journal of Fluid Mechanics, 1995, 295: 23-42. doi: 10.1017/S002211209500187X [34] Jacobs J W, Klein D L, Jenkins D G, et al. Instability growth patterns of a shock-accelerated thin fluid layer[J]. Physical Review Letters, 1993, 70(5): 583-586. doi: 10.1103/PhysRevLett.70.583 [35] Balakumar B J, Orlicz G C, Tomkins C D, et al. Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock[J]. Physics of Fluids, 2008, 20(12): 124103. doi: 10.1063/1.3041705 [36] Orlicz G C, Balakumar B J, Tomkins C D, et al. A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain[J]. Physics of Fluids, 2009, 21(6): 064102. doi: 10.1063/1.3147929 [37] Liang Y, Liu L L, Zhai Z G, et al. Evolution of shock-accelerated heavy gas layer[J]. Journal of Fluid Mechanics, 2020, 886: A7. doi: 10.1017/jfm.2019.1052 [38] Liang Y, Luo X S. On shock-induced heavy-fluid-layer evolution[J]. Journal of Fluid Mechanics, 2021, 920: A13. doi: 10.1017/jfm.2021.438 [39] Ding J C, Li J M, Sun R, et al. Convergent Richtmyer-Meshkov instability of a heavy gas layer with perturbed outer interface[J]. Journal of Fluid Mechanics, 2019, 878: 277-291. doi: 10.1017/jfm.2019.661 [40] Li J M, Ding J C, Si T, et al. Convergent Richtmyer-Meshkov instability of light gas layer with perturbed outer surface[J]. Journal of Fluid Mechanics, 2020, 884: R2. doi: 10.1017/jfm.2019.989 [41] Sun R, Ding J C, Zhai Z G, et al. Convergent Richtmy-er-Meshkov instability of heavy gas layer with perturbed inner surface[J]. Journal of Fluid Mechanics, 2020, 902: A3. doi: 10.1017/jfm.2020.584 [42] Wang G, Wang Y N, Li D D, et al. Numerical study on shock-accelerated gas rings[J]. Physics of Fluids, 2020, 32(2): 026102. doi: 10.1063/1.5135762 [43] Feng L L, Xu J R, Zhai Z G, et al. Evolution of shock-accelerated double-layer gas cylinder[J]. Physics of Fluids, 2021, 33(8): 086105. doi: 10.1063/5.0062459 [44] Liang Y, Jiang Y Z, Wen C Y, et al. Interaction of a planar shock wave and a water droplet embedded with a vapour cavity[J]. Journal of Fluid Mechanics, 2020, 885: R6. doi: 10.1017/jfm.2019.1031 [45] Ou J F, Zhai Z G. Effects of aspect ratio on shock-cylinder interaction[J]. Acta Mechanica Sinica, 2019, 35(1): 61-69. doi: 10.1007/s10409-018-0819-3 [46] Abd-El-Fattah A M, Henderson L F. Shock waves at a slow-fast gas interface[J]. Journal of Fluid Mechanics, 1978, 89(1): 79-95. doi: 10.1017/S0022112078002475 [47] Rikanati A, Oron D, Sadot O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability[J]. Physical Review E, 2003, 67(2): 026307. doi: 10.1103/PhysRevE.67.026307 [48] Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307 [49] Samtaney R, Zabusky N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws[J]. Journal of Fluid Mechanics, 1994, 269: 45-78. doi: 10.1017/S0022112094001485 -