主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Richtmyer-Meshkov不稳定性强化混合参变机理

王兵 卢梦

王兵, 卢梦. Richtmyer-Meshkov不稳定性强化混合参变机理[J]. 气体物理, 2016, 1(6): 5-21.
引用本文: 王兵, 卢梦. Richtmyer-Meshkov不稳定性强化混合参变机理[J]. 气体物理, 2016, 1(6): 5-21.
WANG Bing, LU Meng. Mixing-Enhancement Mechanism of Richtmyer-Meshkov Instability at Different Parameters[J]. PHYSICS OF GASES, 2016, 1(6): 5-21.
Citation: WANG Bing, LU Meng. Mixing-Enhancement Mechanism of Richtmyer-Meshkov Instability at Different Parameters[J]. PHYSICS OF GASES, 2016, 1(6): 5-21.

Richtmyer-Meshkov不稳定性强化混合参变机理

详细信息
    作者简介:

    王兵(1977-)男, 河北唐山, 工学博士, 清华大学航天航空学院副教授, 从事复杂流动数值模拟研究.通信地址:清华大学航天航空学院(100084). E-mail:wbing@tsinghua.edu.cn

  • 中图分类号: V211.3

Mixing-Enhancement Mechanism of Richtmyer-Meshkov Instability at Different Parameters

  • 摘要: 在不同参数条件下, 计算分析了H2O和N2等混合物界面上激波诱导Richtmyer-Meshkov(R-M)不稳定性过程.采用有限差分方法数值求解了二维可压缩Navier-Stokes方程, 对流项以5阶特征紧致-WENO混合格式离散, 输运项以6阶对称紧致格式离散, 时间方向以3阶显式Runge-Kutta方法推进.研究表明, 界面振幅和激波强度增大, 均可增强界面附近涡量场, 强化混合.

     

  • 图  1  一维Sod激波管问题对比

    Figure  1.  Comparisons for one-dimensional Sod shock tube problem

    图  2  一维激波与气泡相互作用问题对比

    Figure  2.  Comparisons for one-dimensional shock wave and bubble interaction problem

    图  3  物理模型示意图

    Figure  3.  Schematic of the physical model

    图  4  瞬时密度(Ms=1.3, a=0.005 m)

    Figure  4.  Instantaneous densities (Ms=1.3, a=0.005 m)

    图  5  瞬时纹影图(Ms=1.3, a=0.005 m)

    Figure  5.  Instantaneous schlieren (Ms=1.3, a=0.005 m)

    图  6  瞬时流向速度(Ms=1.3, a=0.005 m)

    Figure  6.  Instantaneous streamwise velocities (Ms=1.3, a=0.005 m)

    图  7  瞬时涡量(Ms=1.3, a=0.005 m)

    Figure  7.  Instantaneous vorticities (Ms=1.3, a=0.005 m)

    图  8  瞬时斜压项(左列)和瞬时散度项(右列)(Ms=1.3, a=0.005 m)

    Figure  8.  Instantaneous baroclinic terms (left column) and instantaneous dilatation terms (right column) (Ms=1.3, a=0.005 m)

    图  9  拟涡能和界面振幅(Ms=1.3, a=0.005 m)

    Figure  9.  Enstrophy and interface amplitude(Ms=1.3, a=0.005 m)

    图  10  瞬时密度(Ms=1.3, a=0.01 m)

    Figure  10.  Instantaneous densities (Ms=1.3, a=0.01 m)

    图  11  瞬时涡量(Ms=1.3, a=0.01 m)

    Figure  11.  Instantaneous vorticities (Ms=1.3, a=0.01 m)

    图  12  拟涡能和界面振幅(Ms=1.3, a=0.01 m)

    Figure  12.  Enstrophy and interface amplitude (Ms=1.3, a=0.01 m)

    图  13  瞬时密度(Ms=1.3, a=0.0025 m)

    Figure  13.  Instantaneous densities (Ms=1.3, a=0.0025 m)

    图  14  瞬时涡量(Ms=1.3, a=0.0025 m)

    Figure  14.  Instantaneous vorticities (Ms=1.3, a=0.0025 m)

    图  15  拟涡能和界面振幅(Ms=1.3, a=0.0025 m)

    Figure  15.  Enstrophy and interface amplitude (Ms=1.3, a=0.0025 m)

    图  16  瞬时密度(Ms=1.5, a=0.005 m)

    Figure  16.  Instantaneous densities (Ms=1.5, a=0.005 m)

    图  17  瞬时涡量(Ms=1.5, a=0.005 m)

    Figure  17.  Instantaneous vorticities (Ms=1.5, a=0.005 m)

    图  18  拟涡能和界面振幅(Ms=1.5, a=0.005 m)

    Figure  18.  Enstrophy and interface amplitude (Ms=1.5, a=0.005 m)

    图  19  瞬时密度(Ms=1.15, a=0.005 m)

    Figure  19.  Instantaneous densities (Ms=1.15, a=0.005 m)

    图  20  瞬时涡量(Ms=1.15, a=0.005 m)

    Figure  20.  Instantaneous vorticities (Ms=1.15, a=0.005 m)

    图  21  拟涡能和界面振幅(Ms=1.15, a=0.005 m)

    Figure  21.  Enstrophy and interface amplitude(Ms=1.15, a=0.005 m)

    图  22  界面振幅随时间变化对比(Ms=1.3, a=0.005 m)

    Figure  22.  Comparisons for the variations of interface amplitude(Ms=1.3, a=0.005 m)

  • [1] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13: 297-319. doi: 10.1002/(ISSN)1097-0312
    [2] Markstein G H. A shock-tube study of flame front-pressure wave interaction[J]. Symposium on Combustion, 1957, 6(1): 387-398. doi: 10.1016/S0082-0784(57)80054-X
    [3] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4: 101-104. doi: 10.1007/BF01015969
    [4] Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogenieties[J]. Journal of Fluid Mechanics, 1987, 181: 41-76. doi: 10.1017/S0022112087002003
    [5] Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611: 131-150. http://www.lanl.gov/projects/shocktube/pubs/2008_jfm_tomkins.pdf
    [6] Mikaelian K O. Richtmyer-Meshkov instability of arbitrary shapes[J]. Physics of Fluids, 2005, 17: 1-13. doi: 10.1063/1.1848547
    [7] Brouillette M, Sturtevant B. Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface[J]. Journal of Fluid Mechanics, 1994, 263: 271-292. doi: 10.1017/S0022112094004118
    [8] Sadot O, Erez L, Alon U, et al. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability[J]. Physical Review Letters, 1998, 80: 1654-1657. doi: 10.1103/PhysRevLett.80.1654
    [9] Collins B D, Jacobs J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface[J]. Journal of Fluid Mechanics, 2002, 464: 113-136. https://arizona.pure.elsevier.com/en/publications/plif-flow-visualization-and-measurements-of-the-richtmyer-meshkov
    [10] Prestridge K, Orlicz G, Balasubramanian S, et al. Experiments of the Richtmyer-Meshkov instability[J]. Philosophical Transactions A: Mathematical, Physical, and Engineering Science, 2013, 371: 1-9. http://rsta.royalsocietypublishing.org/content/roypta/371/2003/20120165.full.pdf
    [11] Holmes R L, Grove J W, Sharp D H. A numerical investigation of the Richtmyer-Meshkov instability using front tracking[J]. Journal of Fluid Mechanics, 1994, 301: 51-64. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.4953
    [12] Anuchina N N, Volkov V I, Gordeychuk V A, et al. Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code[J]. Journal of Computational and Applied Mathematics, 2004, 168: 11-20. doi: 10.1016/j.cam.2003.06.008
    [13] Latini M, Schilling O, Don W S. Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability[J]. Journal of Computational Physics, 2007, 221: 805-836. doi: 10.1016/j.jcp.2006.06.051
    [14] Hu X Y, Adams N A, Iaccarino G. On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow[J]. Journal of Computational Physics, 2009, 228: 6572-6589. doi: 10.1016/j.jcp.2009.06.002
    [15] Olson B J, Greenough J. Large eddy simulation requirements for the Richtmyer-Meshkov instability[J]. Physics of Fluids, 2014, 26: 241-271. doi: 10.1063/1.4871396
    [16] Holmes R L, Dimonte G, Fryxell B, et al. Richtmyer-Meshkov instability growth: experiment, simulation and theory[J]. Journal of Fluid Mechanics, 1999, 389: 55-79. doi: 10.1017/S0022112099004838
    [17] Burcat A, Ruscic B. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables[R]. ANL-05/20 and TAE 960, 2005.
    [18] Reid R C, Poling B E, Prausnitz J M. The properties of Gases and liquids[M]. New York: McGraw-Hill, 1987: 1-38.
    [19] Ren Y X, Liu M E, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192: 365-386. doi: 10.1016/j.jcp.2003.07.006
    [20] Gupta M R, Roy S, Sarkar S, et al. Effect on Richtmyer-Meshkov instability of deviation from sinusoidality of the corrugated interface between two fluids[J]. Laser and Particle Beams, 2007, 25: 503-510. https://www.cambridge.org/core/journals/laser-and-particle-beams/article/effect-on-richtmyermeshkov-instability-of-deviation-from-sinusoidality-of-the-corrugated-interface-between-two-fluids/5CECD789A089530BA94B76BBBE442416
    [21] Gramer L, Noaa L G. Kelvin-Helmholtz instabilities[J]. Journal of Plasma Physics, 2007, 28: 1-11. http://www.rsmas.miami.edu/users/isavelyev/GFD-2/KH-I.pdf
    [22] Kilchyk V, Nalim R, Merkle C. Laminar premixed flame fuel consumption rate modulation by shocks and expansion waves[J]. Combustion and Flame, 2011, 158: 1140-1148. doi: 10.1016/j.combustflame.2010.10.026
    [23] Fraley G. Rayleigh-Taylor stability for a normal shock wave-density discontinuity interaction[J]. Physics of Fluids, 1986, 29: 376-386. doi: 10.1063/1.865722
    [24] Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 445-468. doi: 10.1146/annurev.fluid.34.090101.162238
    [25] Zhang Q, Sohn S. Nonlinear theory of unstable fluid mixing driven by shock wave[J]. Physics of Fluids, 1997, 9: 1106-1124. doi: 10.1063/1.869202
  • 加载中
图(22)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  30
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-24
  • 修回日期:  2016-09-22
  • 发布日期:  2016-11-20
  • 刊出日期:  2016-11-01

目录

    /

    返回文章
    返回