Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
ZHANG Lai-ping, HE Xin, CHANG Xing-hua, et al. Recent Progress of Static and Dynamic Hybrid Grid Generation Techniques over Complex Geometries[J]. PHYSICS OF GASES, 2016, 1(1): 42-61.
Citation: ZHANG Lai-ping, HE Xin, CHANG Xing-hua, et al. Recent Progress of Static and Dynamic Hybrid Grid Generation Techniques over Complex Geometries[J]. PHYSICS OF GASES, 2016, 1(1): 42-61.

Recent Progress of Static and Dynamic Hybrid Grid Generation Techniques over Complex Geometries

More Information
  • Received Date: October 07, 2015
  • Revised Date: November 12, 2015
  • Published Date: January 19, 2016
  • Grid generation is the first step of numerical simulations in computational fluid dynamics (CFD) applications. The quality of mesh will influence directly the accuracy of numerical results, so it has been a very important research field in CFD. Under the guidance of Prof. Hanxin Zhang, the authors had engaged in unstructured and hybrid grid generation techniques, and corresponding numerical schemes since 1990s, and then in moving grid generation techniques and unsteady numerical schemes. In this paper, recent progress in grid generation techniques, including the static and dynamic hybrid grid generation techniques over complex geometries, steady/unsteady numerical schemes and flow solvers, and their applications in aerospace industry was reviewed.Finally, the challenges and the potential directions of grid generation techniques in the future were discussed. This paper was to appreciate Prof. Hanxin Zhang for his cultivation in his 80th birthday
  • [1]
    张涵信, 沈孟育.计算流体力学——差分方法的原理和应用[M].北京:国防工业出版社, 2003:1~472

    Zhang H X, Shen M Y. Computational fluid dynamics—fundamentals and applications of finite difference methods[M]. Beijing: National Defence Industry Press, 2003: 1~472(in Chinese)
    [2]
    Baker T J. Mesh generation: art or science[J]. Progress in Aerospace Science, 2005, 41(1): 29~63 DOI: 10.1016/j.paerosci.2005.02.002
    [3]
    Thompson J F, Soni B K, Weatherill N P. Handbook of grid generation[M]. Boca Raton: CRC Press, 1998: 1~1136
    [4]
    张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40(4): 424~447 DOI: 10.6052/1000-0992-2010-4-J2009-123

    Zhang L P, Deng X G, Zhang H X. Reviews of moving grid generation techniques and numerical methods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4): 424~447(in Chinese) DOI: 10.6052/1000-0992-2010-4-J2009-123
    [5]
    Lohner R. Recent advances in parallel advancing front grid generation[J]. Archives of Computational Methods in Engineering, 2014, 21(2): 1~14 DOI: 10.1137/S0036144598334138
    [6]
    张来平. 非结构网格、矩形/非结构混合网格复杂无黏流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 1996 http: //www. doc88. com/p-2098284798832. html

    Zhang L P. Numerical simulation for complex inviscid flow fields on unstructured grids and Cartesian/unstructured hybrid grids[D]. Mianyang: China Aerodynamics Research and Development Center, 1996(in Chinese) http: //www. doc88. com/p-2098284798832. html
    [7]
    张来平, 张涵信.复杂无黏流场数值模拟的矩形/三角形混合网格技术[J].力学学报, 1998, 30(1): 104~108 http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB801.013.htm

    Zhang L P, Zhang H X. A Cartesian/triangular hybrid grid solver for complex inviscid flow fields[J]. Acta Mechanica Sinica, 1998, 30(1): 104~108(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXXB801.013.htm
    [8]
    张来平, 张涵信, 高树椿.矩形/非结构混合网格技术及在二维/三维复杂无黏流场数值模拟中的应用[J].空气动力学学报, 1998, 16(1): 79~88 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX801.008.htm

    Zhang L P, Zhang H X, Gao S C. A Cartesian/unstructured hybrid grid solver and its applications to 2D/3D complex inviscid flow fields[J]. Acta Aerodynamica Sinica, 1998, 16(1): 79~88(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX801.008.htm
    [9]
    Zhang L P, Zhang H X. Numerical simulations of 3D inviscid/viscous flow fields on Cartesian/unstructured/prismatic hybrid grids[A]. // The 4th Asian Computational Fluid Dynamics Conference[C]. Mianyang, 2000 https://es.scribd.com/doc/315973354/Ship-and-Offshore-Structures-Congress-pdf
    [10]
    陈建军, 曹建, 徐彦, 等.适应复杂外形的三维黏性混合网格生成算法[J].计算力学学报, 2014, 31(3): 363~370 DOI: 10.7511/jslx201403014

    Chen J J, Cao J, Xu Y, et al. Hybrid mesh generation algorithm for viscous computations of complex aerodynamics configurations[J]. Chinese Journal of Computational Mechanics, 2014, 31(3): 363~370(in Chinese) DOI: 10.7511/jslx201403014
    [11]
    陈建军. 非结构化网格生成及其并行化的若干问题研究[D]. 杭州: 浙江大学, 2006 http: //www. cnki. com. cn/Article/CJFDTotal-ZDZC200804003. htm

    Chen J J. Unstructured mesh generation and its parallelization[D]. Hangzhou: College of Computer Science, Zhejiang University, 2006(in Chinese) http: //www. cnki. com. cn/Article/CJFDTotal-ZDZC200804003. htm
    [12]
    赵钟, 张来平, 赫新.基于各向异性四面体网格聚合的复杂外形混合网格生成方法[J].空气动力学学报, 2013, 31(1) : 34~39 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301007.htm

    Zhao Z, Zhang L P, He X. Hybrid grid generation technique for complex geometries based on agglomeration of anisotropic tetrahedrons[J]. Acta Aerodynamica Sinica, 2013, 31(1): 34~39(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301007.htm
    [13]
    Zhang L P, Zhao Z, Chang X H, et al. A 3D hybrid grid generation technique and multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1): 47~62 DOI: 10.1016/j.cja.2012.12.002
    [14]
    肖涵山. 自适应笛卡尔网格在三维复杂外形流场及机弹分离数值模拟中的应用[D]. 绵阳: 中国空气动力研究与发展中心, 2003 http: //edu. wanfangdata. com. cn/Periodical/Detail/jsjfz201102011

    Xiao H S. Application of adaptive Cartesian grid algorithm for the numerical simulation of arbitrary geometries and store separation[D]. Mianyang: China Aerodynamics Research and Development Center, 2003(in Chinese) http: //edu. wanfangdata. com. cn/Periodical/Detail/jsjfz201102011
    [15]
    Aftosmis M J, Berger M J, Melton J E. Adaptive Cartesian mesh generation[A]. //Handbook of Grid Generation[M]. Boca Raton: CRC Press, 1998: 600~625. http://dl.acm.org/citation.cfm?id=941507
    [16]
    Steger J L, Chaussee D S. Generation of body fitted coordinates using hyperbolic partial differential equations[J]. SIAM Journal on Scientific & Statistical Computing, 1980, 1(4): 431~437 DOI: 10.1137/0901031
    [17]
    Steger J L, Rizk Y M. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations[R]. NASA RM 86753, 1985 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850023574.pdf
    [18]
    Tai C H, Yin S L, Soong C Y. A novel hyperbolic grid generation procedure with inherent adaptive dissipation[J]. Journal of Computational Physics. 1995, 116: 173~179 DOI: 10.1006/jcph.1995.1015
    [19]
    Chan W M, Steger J L. A generalized scheme for three-dimensional hyperbolic grid generation[R]. AIAA 1991-1588, 1991 https://www.researchgate.net/publication/23867601_A_generalized_scheme_for_three-dimensional_hyperbolic_grid_generation
    [20]
    Matsuno K. Hyperbolic upwind method for prismatic grid generation[R]. AIAA 2000-1003, 2000 https://www.researchgate.net/publication/223532732_High-order_upwind_method_for_hyperbolic_grid_generation
    [21]
    Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 2012, 28(8): 1381~1388 http://citeseerx.ist.psu.edu/showciting?cid=2212138
    [22]
    LÖehner R, Yang C. Improved ALE mesh velocities for moving bodies[J]. Communications in Numerical Methods in Engineering, 1996, 12(10): 599~608 DOI: 10.1002/(SICI)1099-0887(199610)12:10
    [23]
    Jasak H, Tukovic Z. Automatic mesh motion for the unstructured finite volume method[J]. Transactions of FAMENA, 2007, 30(2): 1~20 https://www.researchgate.net/profile/Zeljko_Tukovic/publication/228614114_Automatic_mesh_motion_for_the_unstructured_Finite_Volume_Method/links/00b4952813cdc39e19000000.pdf?origin=publication_detail
    [24]
    Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405~423 DOI: 10.1016/j.jcp.2005.05.025
    [25]
    Rendall T C, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17): 6231~6249 DOI: 10.1016/j.jcp.2009.05.013
    [26]
    Rendall T C, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8): 2810~2820 DOI: 10.1016/j.jcp.2009.12.006
    [27]
    张来平, 王振亚, 杨永健.复杂外形的动态混合网格生成方法[J].空气动力学学报, 2004, 22(2): 231~236 http://cdmd.cnki.com.cn/Article/CDMD-90113-2009024396.htm

    Zhang L P, Wang Z Y, Yang Y J. Dynamic hybrid grid generation for complex geometries[J]. Acta Aerodynamica Sinica, 2004, 22(2): 231~236(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90113-2009024396.htm
    [28]
    Zhang L P, Wang Z J. A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes[J]. Computers & Fluids, 2004, 33(7): 891~916 http://www.dept.ku.edu/~cfdku/papers/aiaa-2003-3886.pdf
    [29]
    张来平, 段旭鹏, 常兴华, 等.基于Delaunay背景网格插值方法和局部网格重构的变形体动态混合网格生成技术[J].空气动力学学报, 2009, 27(1): 32~40 http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200901006.htm

    Zhang L P, Duan X P, Chang X H, et al. A hybrid dynamic grid generation technique for morphing bodies based on Delaunay graph and local remeshing[J]. Acta Aerodynamica Sinica, 2009, 27(1): 32~40(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200901006.htm
    [30]
    Zhang L P, Chang X H, Duan X P, et al. A block LU-SGS implicit dual time-stepping algorithm on hybrid dynamic meshes for bio-fluid simulations[J]. Computers & Fluids, 2009, 38: 290~308 https://www.researchgate.net/publication/222422273_A_Block_LU-SGS_Implicit_Dual_Time-Stepping_Algorithm_for_Hybrid_Dynamic_Meshes
    [31]
    Zhang L P, Chang X H, Duan X P, et al. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J]. Computers & Fluids, 2012, 62(12): 45~63 https://www.researchgate.net/publication/256918910_Applications_of_dynamic_hybrid_grid_method_for_three-dimensional_movingdeforming_boundary_problems
    [32]
    Chang X H, Zhang L P, He X. Numerical study of the thunniform mode of fish swimming with different caudal fin shapes[J]. Computers & Fluids, 2012, 68: 54~70 https://www.researchgate.net/publication/256918922_Numerical_study_of_the_thunniform_mode_of_fish_swimming_with_different_Reynolds_number_and_caudal_fin_shape
    [33]
    Blazek J. Computational fluid dynamics: principles and applications[J]. Computational Fluid Dynamics principles & Applications, 2001, 14(1): 134~143 https://www.elsevier.com/books/computational-fluid-dynamics-principles-and-applications/blazek/978-0-08-099995-1
    [34]
    Bui T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flows [J]. Computers & Fluids, 2000, 29(8): 877~915 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.540.1719
    [35]
    Travin A, Shur M, Strelets M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[A]. //412 EUROMECH Colloquium on LES of Complex Transitional and Turbulent flows[C]. Munich, 2000 DOI: 10.1023/B%3AAPPL.0000004937.34078.71
    [36]
    Chen R F, Wang Z J. Fast, block lower-upper symmetric Gauss Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238~2245 DOI: 10.2514/2.914
    [37]
    Jameson A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[R]. AIAA 1991-1596, 1991 https://www.researchgate.net/publication/267982395_Time_dependent_calculations_using_multigrid_with_applications_to_unsteady_flows_past_airfoils_and_wings
    [38]
    Lesoinne M, Farhat C. Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 134: 71~90 DOI: 10.1016/0045-7825(96)01028-6
    [39]
    Ahn H T, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes[J]. Journal of Computational Physics, 2006, 219(2): 671~696 DOI: 10.1016/j.jcp.2006.04.011
    [40]
    刘君, 白晓征, 张涵信, 等.关于变形网格"几何守恒律"概念的讨论[J].航空计算技术, 2009, 39(4): 1~5 http://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200904002.htm

    Liu J, Bai X Z, Zhang H X, et al. Discussion about GCL for deforming grids[J]. Aeronautical Computing Technique, 2009, 39(4): 1~5(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200904002.htm
    [41]
    Wang Z J, Yang H Q. Unsteady flow simulation using a zonal multi-grid approach with moving boundaries[R]. AIAA 1994-0057, 1994 http://www.academia.edu/3049652/Advance_in_Overset_Grid_Schemes_From_Chimera_to_DRAGON_Grids
    [42]
    Chang X H, Ma R, Zhang L P, et al. Further study on the geometric conservation law for finite volume method on dynamic unstructured mesh [J]. Computers & Fluids, 2015, 120: 98~110 https://www.researchgate.net/profile/Xinghua_Chang/publication/282598635_Further_study_on_the_geometric_conservation_law_for_finite_volume_method_on_dynamic_unstructured_mesh/links/568e400908aeaa1481af9560.pdf?origin=publication_detail
    [43]
    张来平, 马戎, 常兴华, 等.虚拟飞行中气动、运动和控制耦合的数值模拟技术[J].力学进展, 2014, 44: 201410 DOI: 10.6052/1000-0992-14-027

    Zhang L P, Ma R, Chang X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44: 201410(in Chinese) DOI: 10.6052/1000-0992-14-027
    [44]
    Chang X H, Ma R, Zhang L P, et al. Fully implicit approach for flow/kinetic coupled problems based on dynamic hybrid mesh[A]. //The 8th International Conference on Computational Fluid Dynamics[C].Chengdu, 2014
    [45]
    赫新, 张来平, 赵钟, 等.大型通用CFD软件体系结构与数据结构研究[J].空气动力学学报, 2012, 30(5): 557~565 http://www.cnki.com.cn/Article/CJFDTOTAL-XXXT201603029.htm

    He X, Zhang L P, Zhao Z, et al. Research of general large scale CFD software architecture and data structure[J]. Acta Aerodynamica Sinica, 2012, 30(5), 557~565(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XXXT201603029.htm
    [46]
    He X, Zhang L P, Zhao Z, et al. Research and development of structured/unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(S): 116~120 https://www.researchgate.net/publication/289831548_Research_and_development_of_structuredunstructured_hybrid_CFD_software
    [47]
    2nd AIAA CFD Drag Prediction Workshop[EB/OL]. http://aaac.larc.nasa.gov/ts-ab/cfdlarc-dpw/, 2003
    [48]
    1st AIAA CFD High Lift Prediction Workshop[EB/OL]. http://hiliftpw. larc.nasa.gov/
    [49]
    Rumsey C L, Slotnick J P, Long M, et al. Summary of the first AIAA CFD High-Lift Prediction Workshop[J]. Journal of Aircraft, 2011, 48(6): 2068~2079 DOI: 10.2514/1.C031447
    [50]
    Chu J, Luckring J M. Experimental surface pressure data obtained on 65° delta wing across Reynolds number and Mach number ranges[R]. NASA TM 4645, 1996 http://cfd.mace.manchester.ac.uk/twiki/pub/ATAAC/TestCase008DeltaWing/ST08_Delta_wing_with_sharp_leading_edge.doc
    [51]
    Hall L H, Parthasarathy V. Validation of an automated Chimera/6-DOF methodology for multiple moving body problems[R].AIAA 1998-0767, 1998 http://www.oalib.com/paper/4591908

Catalog

    Article Metrics

    Article views (105) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return