Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 7 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
FENG Li-li, ZHAI Zhi-gang, SI Ting, LUO Xi-sheng. Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder[J]. PHYSICS OF GASES, 2022, 7(2): 13-25. doi: 10.19527/j.cnki.2096-1642.0959
Citation: FENG Li-li, ZHAI Zhi-gang, SI Ting, LUO Xi-sheng. Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder[J]. PHYSICS OF GASES, 2022, 7(2): 13-25. doi: 10.19527/j.cnki.2096-1642.0959

Eccentric Effect on Evolution of Shock-Accelerated Double-Layer Gas Cylinder

doi: 10.19527/j.cnki.2096-1642.0959
  • Received Date: 01 Oct 2021
  • Revised Date: 11 Nov 2021
  • Evolution of a double-layer gas cylinder induced by a planar shock wave was investigated experimentally and numerically. Three double-layer gas cylinders were generated based on the soap film technology. By fixing the radii of the inner and outer gas cylinders, and changing the position of the inner gas cylinder in the stream-wise direction, the eccentric effect on the double-layer gas cylinder evolution has been highlighted. The results show that when the inner gas cylinder is positioned upstream, a 'jet' toward the upstream interface of the outer cylinder is generated at the late stage. When the inner gas cylinder is positioned downstream, the coupling effect between two downstream interfaces occurs earlier. The linear velocities of the upstream interfaces of the inner and outer gas cylinders are obtained. It is found that the pressures inhibit and promote the upstream interfaces of the inner and outer gas cylinders respectively, and the pressure magnitude is closely related to the position of the inner cylinder. The rarefaction wave impact changes the movement behaviour of the upstream interface of the outer cylinder, and the linear phase will be prolonged or shortened. The outer gas cylinder width is promoted when the eccentricity exists, and its height gradually decreases as the inner one approaches downstream initially. When the inner gas cylinder is positioned upstream, the inner cylinder width is inhibited but its height changes little. The interfacial area and mean volume fraction of the double-layer gas cylinder were extracted from computations, and the results show that the mixing between gases will be promoted when the inner gas cylinder is positioned upstream. Finally, the time-variation of the circulation is obtained. It is found that the circulation of the double-layer gas cylinder at the early stage can be well predicted by the linear superposition of the existing models.

     

  • loading
  • [1]
    Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [2]
    Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969, 4(5): 101-104.
    [3]
    Lindl J, Landen O, Edwards J, et al. Review of the national ignition campaign 2009-2012[J]. Physics of Plasmas, 2014, 21(2): 020501. doi: 10.1063/1.4865400
    [4]
    Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA Journal, 1993, 31(5): 854-862. doi: 10.2514/3.11696
    [5]
    Shimoda J, Inoue T, Ohira Y, et al. On cosmic-ray production efficiency at supernova remnant shocks propaga-ting into realistic diffuse interstellar medium[J]. The Astrophysical Journal, 2015, 803(2): 98. doi: 10.1088/0004-637X/803/2/98
    [6]
    Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 445-468. doi: 10.1146/annurev.fluid.34.090101.162238
    [7]
    Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. Journal of Fluid Mechanics, 1987, 181: 41-76. doi: 10.1017/S0022112087002003
    [8]
    Picone J M, Boris J P. Vorticity generation by shock propagation through bubbles in a gas[J]. Journal of Fluid Mechanics, 1988, 189: 23-51. doi: 10.1017/S0022112088000904
    [9]
    Jacobs J W. Shock-induced mixing of a light-gas cylinder[J]. Journal of Fluid Mechanics, 1992, 234: 629-649. doi: 10.1017/S0022112092000946
    [10]
    Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2239-2247. doi: 10.1063/1.858562
    [11]
    Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008, 611: 131-150. doi: 10.1017/S0022112008002723
    [12]
    王兵, 卢梦. Richtmyer-Meshkov不稳定性强化混合参变机理[J]. 气体物理, 2016, 1(6): 5-21. http://qtwl.xml-journal.net/article/id/30db44a4-85b7-4c9e-bf32-c7211c1c29d3

    Wang B, Lu M. Mixing-enhancement mechanism of Richtmyer-Meshkov instability at different parameters[J]. Physics of Gases, 2016, 1(6): 5-21(in Chinese). http://qtwl.xml-journal.net/article/id/30db44a4-85b7-4c9e-bf32-c7211c1c29d3
    [13]
    张赋, 翟志刚, 司廷, 等. 反射激波作用下重气柱界面演化的PIV研究[J]. 实验流体力学, 2014, 28(5): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201405003.htm

    Zhang F, Zhai Z G, Si T, et al. Experimental study on the evolution of heavy gas cylinder under reshock condition by PIV method[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 13-17(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201405003.htm
    [14]
    Zou L Y, Liao S F, Liu C L, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders[J]. Physics of Fluids, 2016, 28(3): 036101. doi: 10.1063/1.4943127
    [15]
    黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验[J]. 爆炸与冲击, 2017, 37(5): 829-836. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705007.htm

    Huang X L, Liao S F, Zou L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF[J]. Explosion and Shock Waves, 2017, 37(5): 829-836(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705007.htm
    [16]
    李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究[J]. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879

    Li D D, Wang G, Zhang B. Flow and mixing in shock-accelerated elliptic helium gas cylinder process[J]. Acta Physica Sinica, 2018, 67(18): 184702(in Chinese). doi: 10.7498/aps.67.20180879
    [17]
    Wang X S, Yang D G, Wu J Q, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder[J]. Physics of Fluids, 2015, 27(6): 064104. doi: 10.1063/1.4922613
    [18]
    Ding J C, Liang Y, Chen M J, et al. Interaction of planar shock wave with three-dimensional heavy cylindri-cal bubble[J]. Physics of Fluids, 2018, 30(10): 106109. doi: 10.1063/1.5050091
    [19]
    Ding J C, Si T, Chen M J, et al. On the interaction of a planar shock with a three-dimensional light gas cylinder[J]. Journal of Fluid Mechanics, 2017, 828: 289-317. doi: 10.1017/jfm.2017.528
    [20]
    Ou J F, Ding J C, Luo X S, et al. Effects of Atwood number on shock focusing in shock-cylinder interaction[J]. Experiments in Fluids, 2018, 59(2): 29. doi: 10.1007/s00348-018-2492-5
    [21]
    Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Physics of Fluids, 2005, 17(8): 082107. doi: 10.1063/1.2031347
    [22]
    Tomkins C, Prestridge K, Rightley P, et al. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Physics of Fluids, 2003, 15(4): 986-1004. doi: 10.1063/1.1555802
    [23]
    Tomkins C, Prestridge K, Rightley P, et al. Flow morphologies of two shock-accelerated unstable gas cylinders[J]. Journal of Visualization, 2002, 5(3): 273-283. doi: 10.1007/BF03182335
    [24]
    Zhai Z G, Ou J F, Ding J C. Coupling effect on shocked double-gas cylinder evolution[J]. Physics of Fluids, 2019, 31(9): 096104. doi: 10.1063/1.5119003
    [25]
    Zou L Y, Huang W B, Liu C L, et al. On the evolution of double shock-accelerated elliptic gas cylinders[J]. Journal of Fluids Engineering, 2014, 136(9): 091205. doi: 10.1115/1.4026439
    [26]
    廖深飞, 邹立勇, 黄熙龙, 等. Richtmyer-Meshkov不稳定的双椭圆气柱相互作用的PIV研究[J]. 中国科学: 物理学力学天文学, 2016, 46(3): 034702. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201603006.htm

    Liao S F, Zou L Y, Huang X L, et al. A PIV study on the interaction of double Richtmyer-Meshkov-unstable elliptic gas cylinders[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2016, 46(3): 034702(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201603006.htm
    [27]
    Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D: Nonlinear Phenomena, 2007, 235(1/2): 21-28.
    [28]
    Mikaelian K O. Richtmyer-Meshkov instabilities in stratified fluids[J]. Physical Review A, 1985, 31(1): 410-419. doi: 10.1103/PhysRevA.31.410
    [29]
    Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in multilayer fluids with surface tension[J]. Physical Review A, 1990, 42(12): 7211-7225. doi: 10.1103/PhysRevA.42.7211
    [30]
    Mikaelian K O. Rayleigh-Taylor and Richtmyer-Meshkov instabilities in finite-thickness fluid layers[J]. Physics of Fluids, 1995, 7(4): 888-890. doi: 10.1063/1.868611
    [31]
    Mikaelian K O. Numerical simulations of Richtmyer-Meshkov instabilities in finite-thickness fluid layers[J]. Physics of Fluids, 1996, 8(5): 1269-1292. doi: 10.1063/1.868898
    [32]
    Budzinski J M, Benjamin R F, Jacobs J W. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer[J]. Physics of Fluids, 1994, 6(11): 3510-3512. doi: 10.1063/1.868447
    [33]
    Jacobs J W, Jenkins D G, Klein D L, et al. Nonlinear growth of the shock-accelerated instability of a thin fluid layer[J]. Journal of Fluid Mechanics, 1995, 295: 23-42. doi: 10.1017/S002211209500187X
    [34]
    Jacobs J W, Klein D L, Jenkins D G, et al. Instability growth patterns of a shock-accelerated thin fluid layer[J]. Physical Review Letters, 1993, 70(5): 583-586. doi: 10.1103/PhysRevLett.70.583
    [35]
    Balakumar B J, Orlicz G C, Tomkins C D, et al. Simultaneous particle-image velocimetry-planar laser-induced fluorescence measurements of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock[J]. Physics of Fluids, 2008, 20(12): 124103. doi: 10.1063/1.3041705
    [36]
    Orlicz G C, Balakumar B J, Tomkins C D, et al. A Mach number study of the Richtmyer-Meshkov instability in a varicose, heavy-gas curtain[J]. Physics of Fluids, 2009, 21(6): 064102. doi: 10.1063/1.3147929
    [37]
    Liang Y, Liu L L, Zhai Z G, et al. Evolution of shock-accelerated heavy gas layer[J]. Journal of Fluid Mechanics, 2020, 886: A7. doi: 10.1017/jfm.2019.1052
    [38]
    Liang Y, Luo X S. On shock-induced heavy-fluid-layer evolution[J]. Journal of Fluid Mechanics, 2021, 920: A13. doi: 10.1017/jfm.2021.438
    [39]
    Ding J C, Li J M, Sun R, et al. Convergent Richtmyer-Meshkov instability of a heavy gas layer with perturbed outer interface[J]. Journal of Fluid Mechanics, 2019, 878: 277-291. doi: 10.1017/jfm.2019.661
    [40]
    Li J M, Ding J C, Si T, et al. Convergent Richtmyer-Meshkov instability of light gas layer with perturbed outer surface[J]. Journal of Fluid Mechanics, 2020, 884: R2. doi: 10.1017/jfm.2019.989
    [41]
    Sun R, Ding J C, Zhai Z G, et al. Convergent Richtmy-er-Meshkov instability of heavy gas layer with perturbed inner surface[J]. Journal of Fluid Mechanics, 2020, 902: A3. doi: 10.1017/jfm.2020.584
    [42]
    Wang G, Wang Y N, Li D D, et al. Numerical study on shock-accelerated gas rings[J]. Physics of Fluids, 2020, 32(2): 026102. doi: 10.1063/1.5135762
    [43]
    Feng L L, Xu J R, Zhai Z G, et al. Evolution of shock-accelerated double-layer gas cylinder[J]. Physics of Fluids, 2021, 33(8): 086105. doi: 10.1063/5.0062459
    [44]
    Liang Y, Jiang Y Z, Wen C Y, et al. Interaction of a planar shock wave and a water droplet embedded with a vapour cavity[J]. Journal of Fluid Mechanics, 2020, 885: R6. doi: 10.1017/jfm.2019.1031
    [45]
    Ou J F, Zhai Z G. Effects of aspect ratio on shock-cylinder interaction[J]. Acta Mechanica Sinica, 2019, 35(1): 61-69. doi: 10.1007/s10409-018-0819-3
    [46]
    Abd-El-Fattah A M, Henderson L F. Shock waves at a slow-fast gas interface[J]. Journal of Fluid Mechanics, 1978, 89(1): 79-95. doi: 10.1017/S0022112078002475
    [47]
    Rikanati A, Oron D, Sadot O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability[J]. Physical Review E, 2003, 67(2): 026307. doi: 10.1103/PhysRevE.67.026307
    [48]
    Yang J, Kubota T, Zukoski E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity[J]. Journal of Fluid Mechanics, 1994, 258: 217-244. doi: 10.1017/S0022112094003307
    [49]
    Samtaney R, Zabusky N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws[J]. Journal of Fluid Mechanics, 1994, 269: 45-78. doi: 10.1017/S0022112094001485
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (444) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return