主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小攻角下波纹壁对圆锥高超声速边界层稳定性的影响

张成键 桂裕腾 李学良 成江逸 吴杰

张成键, 桂裕腾, 李学良, 成江逸, 吴杰. 小攻角下波纹壁对圆锥高超声速边界层稳定性的影响[J]. 气体物理, 2024, 9(2): 66-80. doi: 10.19527/j.cnki.2096-1642.1078
引用本文: 张成键, 桂裕腾, 李学良, 成江逸, 吴杰. 小攻角下波纹壁对圆锥高超声速边界层稳定性的影响[J]. 气体物理, 2024, 9(2): 66-80. doi: 10.19527/j.cnki.2096-1642.1078
ZHANG Chengjian, GUI Yuteng, LI Xueliang, CHENG Jiangyi, WU Jie. Effect of Wavy Wall on the Stability of Conical Hypersonic Boundary Layer at Small Angle of Attack[J]. PHYSICS OF GASES, 2024, 9(2): 66-80. doi: 10.19527/j.cnki.2096-1642.1078
Citation: ZHANG Chengjian, GUI Yuteng, LI Xueliang, CHENG Jiangyi, WU Jie. Effect of Wavy Wall on the Stability of Conical Hypersonic Boundary Layer at Small Angle of Attack[J]. PHYSICS OF GASES, 2024, 9(2): 66-80. doi: 10.19527/j.cnki.2096-1642.1078

小攻角下波纹壁对圆锥高超声速边界层稳定性的影响

doi: 10.19527/j.cnki.2096-1642.1078
详细信息
    作者简介:

    张成键(1998—)男, 硕士, 主要研究方向为高超声速空气动力学。E-mail: zhang.c.j@foxmail.com

    通讯作者:

    吴杰(1986-)男, 教授, 主要研究方向为超声速/高超声速空气动力学、风洞设计与实验测量技术、超声速射流与噪声控制。E-mail: jiewu@hust.edu.cn

  • 中图分类号: V221.7

Effect of Wavy Wall on the Stability of Conical Hypersonic Boundary Layer at Small Angle of Attack

  • 摘要: 为了获得高升阻比, 高超声速飞行器飞行通常带有一定攻角。波纹壁是在0°攻角条件下可以延迟高超声速边界层转捩的潜在手段, 但在带攻角条件下波纹壁是如何影响不稳定波发展的目前尚不明晰。为研究在小攻角条件下波纹壁对高超声速边界层内不稳定波发展的影响, 在Mach数为6的Ludwieg管风洞中采用高速红外相机和高频压力传感器(PCB)对1°攻角光滑和波纹壁尖锥进行了边界层稳定性的实验研究, 重点分析了不稳定波沿不同方位角和流向位置的发展。实验结果显示: 1°攻角条件下主导高超声速边界层转捩的不稳定波是第2模态波。1°攻角条件下, 波纹壁在45°方位角下对转捩没有延迟效果, 而在90°、135°和180°方位角下波纹壁对转捩具有促进效果。

     

  • 图  1  华中科技大学Φ0.5 m Mach 6 Ludwieg管风洞[31]

    Figure  1.  HUST Φ0.5 m Mach 6 Ludwieg tube wind tunnel[31]

    图  2  模型实物图

    Figure  2.  Physical drawing of model

    图  3  1°攻角模型尺寸示意图(单位:mm)

    Figure  3.  Schematic of model dimensions for 1° angle of attack(unit: mm)

    图  4  高速红外相机

    Figure  4.  High-speed infrared camera

    图  5  PCB高频压力传感器

    Figure  5.  PCB high-frequency pressure sensor

    图  6  FLDI设备

    Figure  6.  FLDI setup

    图  7  0°攻角条件红外结果

    Figure  7.  Infrared results at 0° angle of attack

    图  8  0°攻角条件PSD频谱

    Figure  8.  PSD spectrum at 0° angle of attack

    图  9  0°攻角条件FLDI频谱结果对比

    Figure  9.  FLDI spectrum at 0° angle of attack

    图  10  0°攻角条件增长率比较

    Figure  10.  Comparison of growth rate at 0° angle of attack

    图  11  1°攻角条件红外结果

    Figure  11.  Infrared results at 1° angle of attack

    图  12  1°攻角条件PSD频谱

    Figure  12.  PSD spectrum at 1° angle of attack

    图  13  1°攻角条件PSD频谱

    Figure  13.  PSD spectrum at 1° angle of attack

    图  14  1°攻角各个方位角增长率比较

    Figure  14.  Comparison of growth rate of each azimuth angle at 1° angle of attack

    图  15  135°和180°方位角双谱分析结果

    Figure  15.  Bispectral analysis results at 135° and 180° azimuth angles

    表  1  0°攻角下红外测量与频谱结果转捩位置对比

    Table  1.   Transition position comparison between infrared measurement and spectrum results at 0° angle of attack

    method smooth cone/mm wavy cone/mm
    infrared result 310 330
    spectral result 287.8~312.7 312.7~337.5
    下载: 导出CSV

    表  2  1°攻角下红外测量与频谱结果转捩位置对比

    Table  2.   Transition position comparison between infrared measurement and spectrum results at 1° angle of attack

    azimuth angle/(°) smooth infrared/mm smooth power spectrum/mm wavy infrared/mm wavy power spectrum/mm
    0 375 behind 357.3 behind 375 behind 357.3 behind
    45 337.5~357.3 337.5~357.3
    90 310 287.8~312.7 300 287.8~312.7
    135 207.4~263.0 207.4~263.0
    180 160 182.6~207.4 175 182.6 front
    下载: 导出CSV
  • [1] Schneider S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences, 2004, 40(1/2): 1-50.
    [2] Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95.
    [3] Lee C, Chen S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1): 155-170.
    [4] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 114701. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201911011.htm

    Chen J Q, Yuan X X, Tu G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica-Physica, Mechanica & Astronomica, 2019, 49(11): 114701(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201911011.htm
    [5] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm
    [6] Mack L M. Computation of the stability of the laminar boundary layer[J]. Methods of Computational Physics, 1965, 4: 247-299.
    [7] Kendall J M. Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3): 290-299.
    [8] Malik M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493.
    [9] Fedorov A, Shiplyuk A, Maslov A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479: 99-124.
    [10] Rasheed A, Hornung H G, Fedorov A V, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J]. AIAA Journal, 2002, 40(3): 481-489.
    [11] Zhu W K, Shi M T, Zhu Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1): 011701.
    [12] Gui Y T, Wang W Z, Zhao R, et al. Hypersonic boundary-layer instability characteristics on sharp cone with porous coating[J]. AIAA Journal, 2022, 60(7): 4453-4461.
    [13] Wagner A. Passive hypersonic boundary layer transition control using ultrasonically absorptive carbon-carbon ceramic with random microstructure[D]. Leuven: Katholieke Universiteit Leuven, 2014.
    [14] Fong K D, Wang X W, Huang Y, et al. Second mode suppression in hypersonic boundary layer by roughness: design and experiments[J]. AIAA Journal, 2015, 53(10): 3138-3144.
    [15] Cheng J Y, Huang R R, Liu W T, et al. Influence of single roughness element on hypersonic boundary-layer transition of cone[J]. AIAA Journal, 2023, 61(7): 3210-3218.
    [16] Fedorov A V, Soudakov V, Leyva I A. Stability analysis of high-speed boundary-layer flow with gas injection[R]. AIAA 2014-2498, 2014.
    [17] Jewell J, Wagnild R, Leyva I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures[R]. AIAA 2013-0523, 2013.
    [18] Wagnild R, Candler G, Leyva I, et al. Carbon dioxide injection for hypervelocity boundary layer stability[R]. AIAA 2010-1244, 2010.
    [19] Leyva I, Laurence S, Beierholm A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions[R]. AIAA 2009-1287, 2009.
    [20] Bountin D, Chimitov T, Maslov A, et al. Stabilization of a hypersonic boundary layer using a wavy surface[J]. AIAA Journal, 2013, 51(5): 1203-1210.
    [21] Fujii K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4): 731-738.
    [22] Si W F, Huang G L, Zhu Y D, et al. Hypersonic aerodynamic heating over a flared cone with wavy wall[J]. Physics of Fluids, 2019, 31(5): 051702.
    [23] Zhu W K, Gu D W, Si W F, et al. Instability evolution in the hypersonic boundary layer over a wavy wall[J]. Journal of Fluid Mechanics, 2022, 943: A16. doi: 10.1017/jfm.2022.437
    [24] Zhao J Q, Sima X H, Xiong Y D, et al. Impact of wavy wall surface on hypersonic boundary-layer instability of sharp cone model[J]. AIAA Journal, 2022, 60(11): 6203-6213. doi: 10.2514/1.J062035
    [25] Novikov A, Egorov I, Fedorov A. Direct numerical simulation of supersonic boundary layer stabilization using grooved wavy surface[R]. AIAA 2010-1245, 2010.
    [26] Bountin D A, Maslov A A. Analysis of the development of perturbations in a hypersonic boundary layer behind a wavy surface[J]. Technical Physics Letters, 2017, 43(7): 623-626. doi: 10.1134/S1063785017070021
    [27] Zhou Y L, Liu W, Chai Z X, et al. Numerical simulation of wavy surface effect on the stability of a hypersonic boundary layer[J]. Acta Astronautica, 2017, 140: 485-496.
    [28] Saric W, Reed H. Crossflow instabilities-theory & technology[R]. AIAA 2003-771, 2003.
    [29] Saric W S, Carpenter A L, Reed H L. Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1940): 1352-1364.
    [30] Lukashevich S V, Morozov S O, Shiplyuk A N. Passive porous coating effect on a hypersonic boundary layer on a sharp cone at small angle of attack[J]. Experiments in Fluids, 2018, 59(8): 130.
    [31] 黄冉冉, 张成键, 李创创, 等. 华中科技大学Φ0.5 m马赫6 Ludwieg管风洞设计与流场初步校测[J]. 空气动力学学报, 2023, 41(1): 39-48, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202301003.htm

    Huang R R, Zhang C J, Li C C, et al. Design and preliminary freestream calibration of HUST Φ0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(1): 39-48, 85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202301003.htm
    [32] 王猛, 李玉军, 赵荣奂, 等. 基于在线加热涂层的宽速域转捩探测技术[J]. 航空学报, 2022, 43(11): 526820. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202211011.htm

    Wang M, Li Y J, Zhao R H, et al. Transition detection technique for wide speed range by means of on-line heating coating[J]. Acta Aeronautica et Astronautica Sini-ca, 2022, 43(11): 526820(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202211011.htm
    [33] Mirómiró F, Dehairs P, Pinna F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal, 2019, 57(4): 1567-1578.
    [34] Marineau E C, Moraru G C, Lewis D R, et al. Mach 10 boundary layer transition experiments on sharp and blunted cones[R]. AIAA 2014-3108, 2014.
    [35] Liu X L, Yi S H, Niu H B, et al. Experimental investigation about the second-mode waves in hypersonic bounda-ry layer over a cone at small angle of attack[J]. Experimental Thermal and Fluid Science, 2020, 118: 110143.
    [36] Zhu W K, Lee C. Perturbation decomposition over a flared cone with a wavy wall[R]. AIAA 2022-3854, 2022.
    [37] 霍俊杰, 易仕和, 牛海波, 等. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究[J]. 气体物理, 2022, 7(4): 67-76. doi: 10.19527/j.cnki.2096-1642.0906

    Huo J J, Yi S H, Niu H B, et al. Experimental study of flow on the leeward side of a cone at a high angle of attack based on temperature sensitive paint[J]. Physics of Gases, 2022, 7(4): 67-76(in Chinese). doi: 10.19527/j.cnki.2096-1642.0906
    [38] 韩宇峰, 马绍贤, 苏彩虹. 高超声速三维边界层横流转捩的数值研究[J]. 空气动力学学报, 2019, 37(4): 522-529. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904002.htm

    Han Y F, Ma S X, Su C H. Numerical study on cross-flow transition in three-dimensional hypersonic boundary layers[J]. Acta Aerodynamica Sinica, 2019, 37(4): 522-529(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904002.htm
    [39] Moyes A J, Paredes P, Kocian T S, et al. Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone[J]. Journal of Fluid Mechanics, 2017, 812: 370-397.
    [40] Kocian T S, Moyes A J, Reed H L, et al. Hypersonic crossflow instability[J]. Journal of Spacecraft and Rockets, 2019, 56(2): 432-446.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  20
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-09-25

目录

    /

    返回文章
    返回