[1] |
张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1):S1-S7. Zhang J, Zhang D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):S1-S7(in Chinese).
|
[2] |
Barnes C J, Visbal M R. Stiffness effects on laminar se- paration flutter[J]. Journal of Fluids and Structures, 2019, 91:102767.
|
[3] |
McCroskey W J, Carr L W, McAlister K W. Dynamic stall experiments on oscillating airfoils[J]. AIAA Journal, 1976, 14(1):57-63.
|
[4] |
Sheng W, Galbraith R A, Coton F N. Prediction of dynamic stall onset for oscillatory low-speed airfoils[J]. Journal of Fluids Engineering, 2008, 130(10):101204.
|
[5] |
Wu Y, Dai Y T, Yang C, et al. Effect of trailing-edge morphing on flow characteristics around a pitching airfoil[J]. AIAA Journal, 2023, 61(1):160-173.
|
[6] |
Spentzos A, Barakos G, Badcock K, et al. Investigation of three-dimensional dynamic stall using computational fluid dynamics[J]. AIAA Journal, 2005, 43(5):1023-1033.
|
[7] |
Wang S Y, Ingham D B, Ma L, et al. Turbulence modeling of deep dynamic stall at relatively low Reynolds number[J]. Journal of Fluids and Structures, 2012, 33:191-209.
|
[8] |
Kim Y, Xie Z T. Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades[J]. Computers & Fluids, 2016, 129:53-66.
|
[9] |
Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
|
[10] |
Van Ingen J L. The eN method for transition prediction. Historical review of work at TU Delft[R]. AIAA 20083830, 2008:3830.
|
[11] |
朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):123-134. Zhu Z, Song W P, Han Z H. Automatic transition prediction for wing-body configuration using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):123-134(in Chinese).
|
[12] |
韩忠华, 王绍楠, 韩莉, 等. 一种基于动模态分解的翼型流动转捩预测新方法[J]. 航空学报, 2017, 38(1):30-46. Han Z H, Wang S N, Han L, et al. A novel method for automatic transition prediction for flows over airfoils based on dynamic mode decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2017, 28(1):30-46(in Chinese).
|
[13] |
Launder B E, Sharma B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2):131-137.
|
[14] |
Menter F R, Langtry R, Völker S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1/4):277-303.
|
[15] |
Lodefier K, Merci B, De Langhe C, et al. Transition modelling with the SST turbulence model and an intermittency transport equation[C]. ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. Atlanta, Georgia, USA:ASME, 2003:771-777.
|
[16] |
Wang L, Fu S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187.
|
[17] |
Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58:36-59.
|
[18] |
Xu J K, Bai J Q, Fu Z Y, et al. Parallel compatible transition closure model for high-speed transitional flow[J]. AIAA Journal, 2017, 55(9):3040-3050.
|
[19] |
Dhawan S, Narasimha R. Some properties of boundary layer flow during the transition from laminar to turbulent motion[J]. Journal of Fluid Mechanics, 1958, 3(4):418-436.
|
[20] |
Suzen Y B, Huang P G. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122(2):273-284.
|
[21] |
Cho J R, Chung M K. A k-ε-γ equation turbulence model[J]. Journal of Fluid Mechanics, 1992, 237:301-322.
|
[22] |
Steelant J, Dick E. Modelling of bypass transition with conditioned Navier-Stokes equations coupled to an intermittency transport equation[J]. International Journal for Numerical Methods in Fluids, 1996, 23(3):193-220.
|
[23] |
Menter F R, Smirnov P E, Liu T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4):583-619.
|
[24] |
Singh A P, Duraisamy K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids, 2016, 28(4):045110.
|
[25] |
Singh A P, Medida S, Duraisamy K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7):2215-2227.
|
[26] |
Yang M C, Xiao Z X. Improving the k-ω-γ-Ar transition model by the field inversion and machine learning framework[J]. Physics of Fluids, 2020, 32(6):064101.
|
[27] |
Zafar M I, Xiao H, Choudhari M M, et al. Convolutional neural network for transition modeling based on linear stability theory[J]. Physical Review Fluids, 2020, 5(11):113903.
|
[28] |
Ott J, Pritchard M, Best N, et al. A Fortran-Keras deep learning bridge for scientific computing[J]. Scientific Programming, 2020, 2020:8888811.
|
[29] |
Maulik R, Sharma H, Patel S, et al. Deploying deep learning in OpenFOAM with TensorFlow[R]. AIAA 2021-1485, 2021:1485.
|
[30] |
Maulik R, Sharma H, Patel S, et al. A turbulent eddy-viscosity surrogate modeling framework for Reynolds-averaged Navier-Stokes simulations[J]. Computers & Fluids, 2021, 227:104777.
|
[31] |
Suluksna K, Juntasaro E. Assessment of intermittency transport equations for modeling transition in boundary layers subjected to freestream turbulence[J]. International Journal of Heat and Fluid Flow, 2008, 29(1):48-61.
|
[32] |
Lee T, Gerontakos P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512:313-341.
|