主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两层热对流系统传热与流动结构的实验

王牧 陈阳 王伟 韦萍

王牧, 陈阳, 王伟, 韦萍. 两层热对流系统传热与流动结构的实验[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1066
引用本文: 王牧, 陈阳, 王伟, 韦萍. 两层热对流系统传热与流动结构的实验[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1066
WANG Mu, CHEN Yang, WANG Wei, WEI Ping. Experiment for Heat Transport and Flow Structure of a Two-Layer Thermal Convection[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1066
Citation: WANG Mu, CHEN Yang, WANG Wei, WEI Ping. Experiment for Heat Transport and Flow Structure of a Two-Layer Thermal Convection[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1066

两层热对流系统传热与流动结构的实验

doi: 10.19527/j.cnki.2096-1642.1066
基金项目: 

国家自然科学基金面上项目(12272271)

详细信息
    作者简介:

    王牧(1995-)男,博士,研究Rayleigh-Bénard热对流,传热,立体三维重构。E-mail:1910092@tongji.edu.cn

    通讯作者:

    韦萍(1986-)女,教授,研究Rayleigh-Bénard热对流,转动湍流,传热。E-mail:16531@tongji.edu.cn

  • 中图分类号: O357.5

Experiment for Heat Transport and Flow Structure of a Two-Layer Thermal Convection

  • 摘要: 双层热对流系统广泛存在于自然界中。为研究该系统的传热规律,刻画其中的流动结构特性,在矩形对流槽中使用甘油和2 cs硅油两种互不相溶的液体作为工作介质。位于底部的甘油液体层宽高比为10.4,其下表面是无滑移固液边界,上表面为滑移交界面,底部甘油层的实验参数为Rayleigh数Ra1范围260 ≤Ra1≤ 6 000,Prandtl数Pr1范围3 708<Pr1<7 000。硅油液体层的宽高比约为0.53,上表面为无滑移固液边界,硅油层Rayleigh数Ra2范围1.5×109Ra2 ≤ 2.0×1010,Prandtl数Pr2范围28<Pr2 <33。发现两层对流系统在两个区间下有不同的传热效率和流动状态。在区间1,即传热功率小于某个特定热流时,下面甘油层处于稳定层流状态。而在区间2,即传热功率大于该热流时,甘油层内液体处于不稳定对流状态。随着全局温差的增加,两层热对流系统的全局传热效率从区间1到区间2有一个突然的增加。甘油层的震荡失稳临界Ra数为1 523,这个数值小于无限大平板无滑移边界的理论预测值1 708。即滑移边界可使流体更不稳定,滑移边界使得硅油层的传热效率增加。采用阴影法对该系统内的对流斑图、交界面以及热羽流等流动结构进行了进一步刻画和分析。

     

  • [1] 余荔, 宁利中, 魏炳乾, 等. Rayleigh-Bénard对流及其在工程中的应用[J]. 水资源与水工程学报, 2008, 19(3):52-54. Yu L, Ning L Z, Wei B Q, et al. Rayleigh-Bénard convection and application in engineering[J]. Journal of Water Resources & Water Engineering, 2008, 19(3):52-54(in Chinese).
    [2] 周全, 夏克青. Rayleigh-Bénard湍流热对流研究的进展、现状及展望[J]. 力学进展, 2012, 42(3):231-251. Zhou Q, Xia K Q. Advances and outlook in turbulent Rayleigh-Bénard convection[J]. Advances in Mechanics, 2012, 42(3):231-251(in Chinese).
    [3] Neelin J D, Latif M, Jin F. Dynamics of coupled oceanatmosphere models:The tropical problem[J]. Annual Review of Fluid Mechanics, 1994, 26(1):617-659.
    [4] Olson P, Silver P G, Carlson R W. The large-scale structure of convection in the Earth's mantle[J]. Nature, 1990, 344(6263):209-215.
    [5] Tackley P J. Mantle Convection and Plate Tectonics:Toward an Integrated Physical and Chemical Theory[J]. Science, 2000, 288(5473):2002-2007.
    [6] Richter F M, Johnson C E. Stability of a chemically layered mantle[J]. Journal of Geophysical Research,1974, 79(11):1635-1639.
    [7] Busse F H. On the aspect ratios of two-layer mantle convection[J]. Physics of the Earth & Planetary Interiors, 1981, 24(4):320-324.
    [8] Prakash A, Koster J N. Convection in multiple layers of immiscible liquids in a shallow cavity-I. Steady natural convection[J]. International Journal of Multiphase Flow, 1994, 20(2):383-396.
    [9] Nataf H C, Moreno S, Cardin P. What is responsible for thermal coupling in layered convection?[J]. Journal de Physique, 1988, 49(10):1707-1714.
    [10] Busse F H, Petry M. Homologous onset of double layer convection[J]. Physical Review E, 2009, 80(4):046316.
    [11] Diwakar S V, Tiwari S, Das S K, et al. Stability and resonant wave interactions of confined two-layer Rayleigh-Bénard systems[J]. Journal of Fluid Mechanics, 2014, 754:415-455.
    [12] Juel A, Burgess J M, Mccormick W D, et al. Surface tension-driven convection patterns in two liquid layers[J]. Physica D, 2000, 143(1/4):169-186.
    [13] Johnson D, Narayanan R. Geometric effects on convective coupling and interfacial structures in bilayer convection[J]. Physical Review E, 1997, 56(5):5462-5472.
    [14] Xie Y C, Xia K Q. Dynamics and flow coupling in two- layer turbulent thermal convection[J]. Journal of Fluid Mechanics, 2013, 728:R1.
    [15] Yoshida M, Hamano Y. Numerical studies on the dynamics of two-layer Rayleigh-Bénard convection with an infinite Prandtl number and large viscosity contrasts[J]. Physics of Fluids, 2016, 28(11):116601.
    [16] Liu H R, Chong K L, Wang Q, et al. Two-layer thermally driven turbulence:mechanisms for interface breakup[J]. Journal of Fluid Mechanics, 2021, 913:A9.
    [17] Liu H R, Chong K L, Yang R, et al. Heat transfer in turbulent Rayleigh-Bénard convection through two immiscible fluid layers[J]. Journal of Fluid Mechanics, 2022, 938:A31.
    [18] Huang H L, Xu W, Wang Y, et al. Fluctuation-induced slip of thermal boundary layers at a stable liquid-liquid interface[J]. Journal of Fluid Mechanics, 2022, 951:A10.
    [19] Chandrasekhar S. Hydrodynamic and hydromagnetic stability[J]. Oxford:Clarendon Press, 1961.
    [20] Jeffreys H. Some cases of instability in fluid motion[J]. Proceedings of the Royal Society of London Series A, 1928, 118(779):195-208.
    [21] Shang X D, Tong P E, Xia K Q. Scaling of the local convective heat flux in turbulent Rayleigh-Bénard convection[J]. Physical Review Letters, 2008, 100(24):244503.
  • 加载中
计量
  • 文章访问数:  31
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-07-28
  • 网络出版日期:  2023-08-31

目录

    /

    返回文章
    返回