主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等离子体合成射流的高超声速飞行器标模激波控制实验

谢玮 胡国暾 石伟 周岩 卢洪波 罗振兵

谢玮, 胡国暾, 石伟, 周岩, 卢洪波, 罗振兵. 基于等离子体合成射流的高超声速飞行器标模激波控制实验[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1065
引用本文: 谢玮, 胡国暾, 石伟, 周岩, 卢洪波, 罗振兵. 基于等离子体合成射流的高超声速飞行器标模激波控制实验[J]. 气体物理. doi: 10.19527/j.cnki.2096-1642.1065
XIE Wei, HU Guo-tun, SHI Wei, ZHOU Yan, LU Hong-bo, LUO Zhen-bing. Experiment on Shock Wave Control of a Hypersonic Vehicle Standard Model Based on Plasma Synthetic Jet[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1065
Citation: XIE Wei, HU Guo-tun, SHI Wei, ZHOU Yan, LU Hong-bo, LUO Zhen-bing. Experiment on Shock Wave Control of a Hypersonic Vehicle Standard Model Based on Plasma Synthetic Jet[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1065

基于等离子体合成射流的高超声速飞行器标模激波控制实验

doi: 10.19527/j.cnki.2096-1642.1065
基金项目: 

国家自然科学基金(12202488, 12002377, 52075538, 12072352, T2221002)

湖南省自然科学基金(2020JJ5670,2020JJ2031, 2021JJ40672)

详细信息
    作者简介:

    谢玮(1998-) 男, 博士, 主要研究方向为高速主动流动控制。E-mail:nudtxiewei@163.com

  • 中图分类号: V211.7

Experiment on Shock Wave Control of a Hypersonic Vehicle Standard Model Based on Plasma Synthetic Jet

  • 摘要: 基于等离子体合成射流(plasma synthetic jet,PSJ)的新型主动流动控制技术由于具有无需气源、控制力强、激励频带宽等优势,在激波控制领域极具应用潜力。在高超声速风洞中实验研究了单脉冲PSJ对高超声速飞行器标模头部弓形激波及侧翼激波的控制效果及对飞行器的减阻作用。结果表明,逆向PSJ可使高超声速飞行器标模头部弓形激波脱体距离显著增大,横向PSJ可使侧翼激波基本完全消除,动态力传感器测得飞行器最大瞬时减阻率约为15.5%,但传感器测得的阻力变化存在大约250 μs的延迟。研究了放电能量、来流总压、出口直径以及腔体体积对头部弓形激波控制效果的影响。

     

  • [1] Bushnell D M. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36:81-96.
    [2] 罗振兵,夏智勋,王林,等.高超声速飞行器内外流 主动流动控制[M].北京:科学出版社, 2019:1-8. Luo Z B, Xia Z X, Wang L, et al. Active flow control technology for internal and external flow of hypersonic vehicle[M]. Beijing:Science Press, 2019:1-8(in Chinese).
    [3] 黄伟,李世斌,颜力,等.空间任务飞行器减阻防热 新方法及其应用[M].北京:科学出版社, 2021: 1-38. Huang W, Li S B, Yan L, et al. New methods for reducing drag and heat of space mission vehicle and its application[M]. Beijing:Science Press, 2021:1-38(in Chinese).
    [4] Huang W, Chen Z, Yan L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows:a review[J]. Progress in Aerospace Sciences, 2019, 105:31-39.
    [5] Alberti A, Munafò A, Pantano C, et al. Self-consistent computational fluid dynamics of supersonic drag reduction via upstream-focused laser-energy deposition[J]. AIAA Journal, 2021, 59(4):1214-1224.
    [6] 韩路阳,王斌,蒲亮,等.能量沉积减阻技术机理及 相关问题研究进展[J].航空学报, 2022, 43(9): 026032. Han L Y, Wang B, Pu L, et al. Research progress on mechanism and related problems of energy deposition drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):026032(in Chinese).
    [7] 王殿恺,文明,王伟东,等.脉冲激光与正激波相互 作用过程和减阻机理的实验研究[J].力学学报, 2018, 50(6):1337-1345. Wang D K, Wen M, Wang W D, et al. Experimental study on process and mechanisms of wave drag reduction during pulsed laser interacting with shock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (6):1337-1345(in Chinese).
    [8] Sharma K, Nair M T. Combination of counterflow jet and cavity for heat flux and drag reduction[J]. Physics of Fluids, 2020, 32(5):056107.
    [9] 王泽江,李杰,曾学军,等.逆向喷流对双锥导弹外 形减阻特性的影响[J].航空学报, 2020, 41(12): 124116. Wang Z J, Li J, Zeng X J, et al. Effect of an opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):124116(in Chinese).
    [10] Cattafesta III L N, Sheplak M. Actuators for active flow control[J]. Annual Review of Fluid Mechanics, 2011, 43:247-272.
    [11] Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62:52-78.
    [12] Zhang X, Zhao Y G, Yang C. Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage power[J]. Chinese Journal of Aeronautics, 2023, 36(1): 1-21.
    [13] 张鑫,王勋年.正弦交流介质阻挡放电等离子体激励 器诱导流场研究的进展与展望[J].力学学报, 2023, 55(2):285-298. Zhang X, Wang X N. Research progress and outlook of flow field created by dielectric barrier discharge plasma actuators driven by a sinusoidal alternating current highvoltage power[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2):285-298(in Chinese).
    [14] 赵志杰,罗振兵,刘杰夫,等.基于分布式合成双射 流的飞行器无舵面三轴姿态控制飞行试验[J].力学 学报, 2022, 54(5):1220-1228. Zhao Z J, Luo Z B, Liu J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5):12201228(in Chinese).
    [15] Grossman K R, Cybyk B Z, VanWie D M. Sparkjet actuators for flow control[R]. AIAA 2003-57, 2003.
    [16] 周岩,罗振兵,王林,等.等离子体合成射流激励器 及其流动控制技术研究进展[J].航空学报, 2022, 43 (3):25027. Zhou Y, Luo Z B, Wang L, et al. Plasma synthetic jet actuator for flow control:Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):25027(in Chinese).
    [17] Zong H H, Chiatto M, Kotsonis M, et al. Plasma synthetic jet actuators for active flow control[J]. Actuators, 2018, 7(4):77.
    [18] Tang M X, Wu Y, Zong H H, et al. Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array[J]. Journal of Fluid Mechanics, 2022, 931:A16.
    [19] 罗凯,汪球,李逸翔,等.基于高温气体效应的磁流 体流动控制研究进展[J].力学学报, 2021, 53(6): 1515-1531. Luo K, Wang Q, Li Y X, et al. Research progress on magnetohydrodynamic flow control under test conditions with high temperature real gas effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531(in Chinese).
    [20] Xie W, Luo Z B, Zhou Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188:416-425.
    [21] Zhou Y, Xia Z X, Luo Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J]. Acta Astronautica, 2017, 133:95-102.
    [22] Narayanaswamy V, Raja L L, Clemens N T. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator[J]. AIAA Journal, 2012, 50(1):246-249.
    [23] Greene B R, Clemens N T, Magari P, et al. Control of mean separation in shock boundary layer interaction using pulsed plasma jets[J]. Shock Waves, 2015, 25(5): 495-505.
    [24] Wang P, Shen C B. Characteristics of mixing enhancement achieved using a pulsed plasma synthetic jet in a supersonic flow[J]. Journal of Zhejiang University-Science A, 2019, 20(9):701-713.
    [25] Zhou Y, Xia Z X, Luo Z B, et al. Effect of three-electrode plasma synthetic jet actuator on shock wave control [J]. Science China Technological Sciences, 2017, 60 (1):150-156.
    [26] Liu R B, Lin R X, Lian G C, et al. Multichannel plasma synthetic jet actuator driven by Marx high-voltage generator [J]. AIAA Journal, 2021, 59(9):3417-3430.
    [27] Popkin S H, Cybyk B Z, Foster C H, et al. Experimental estimation of SparkJet efficiency[J]. AIAA Journal, 2016, 54(6):1831-1845.
    [28] Geng X, Zhang W L, Shi Z W, et al. Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects[J]. Physics of Fluids, 2021, 33(6):067113.
    [29] Wang H Y, Li J, Jin D, et al. High-frequency counterflow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142:45-56.
    [30] 陈加政,胡国暾,樊国超,等.等离子体合成射流对 钝头激波的控制与减阻[J].航空学报, 2021, 42(7): 124773. Chen J Z, Hu G T, Fan G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773(in Chinese).
    [31] Xie W, Luo Z B, Zhou Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35(8):75-91.
    [32] Xie W, Luo Z B, Hou L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9):096104.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  19
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2023-06-18
  • 网络出版日期:  2023-08-21

目录

    /

    返回文章
    返回