Theoretical Prediction on the Nozzle Thrust of Scramjets
-
摘要: 超燃冲压发动机发展60多年来,虽然取得了很大的进步,但是对其推力大小的理论评估是一个没有很好解决的问题. 超燃冲压发动机的推力主要由喷管产生,因此重点研究了喷管的推力特性. 将燃烧室出口参数作为喷管入口边界条件,利用等熵膨胀理论,通过对喷管壁面压力积分,得到了简化的无量纲推力公式,获得了影响推力大小的关键参数和物理规律. 理论分析表明,对于给定的喷管,超声速燃烧对于提高推力是有利的. 提高推力的主要途径就是提高燃烧气体的压力. 理论分析结果与数值结果吻合比较好,证明了理论分析的准确性.Abstract: A big progress has been made for scramjets in the past 60 years. However, whether it has enough thrust or not is not clear to date. In this paper, the thrust performance of the nozzle was analysed by using the isentropic expansion theory, because the thrust is mostly produced by the nozzle in scramjets. The parameters in the combustor were used as the boundary conditions. A dimensionless thrust equation was obtained by integrating the pressure along the nozzle wall. The key parameters and physical laws governing the thrust performance were discussed. The analysis results show that the supersonic combustion is good for producing higher thrust. The main way to get heavy thrust is to increase the combustion static pressure in the combustor. The analysis results are in good agreement with CFD results, which demonstrates its correctness.
-
Key words:
- scramjets /
- thrust /
- nozzle /
- isentropic expansion theory /
- theoretical analysis
-
表 1 理论推力与数值模拟壁面压力积分推力比较
Table 1. Comparison of theoretical results and numerical results
mode p1/Pa Ma1 A1/m2 p2/Pa Ma2 A2/m2 Ftheory/N Ftheory/(p1A1) FCFD/N FCFD/(p1A1) discrepancy/(%) ODW 29 863.8 1.36 0.076 3 6 442.6 2.269 0.183 4 1 274 0.56 1 298 0.57 -1.78 NDW 13 087.3 1.76 0.076 3 3 221.2 2.55 0.183 4 635 0.63 611 0.61 3.28 -
[1] Ferri A. Review of problems in application of supersonic combustion[J]. The Journal of the Royal Aeronautical Society, 1964, 68(645): 575-597. doi: 10.1017/S0368393100080391 [2] Ferri A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1): 3-10. doi: 10.2514/3.43899 [3] Ferri A. Mixing-controlled supersonic combustion[J]. Annual Review of Fluid Mechanics, 1973, 5: 301-338. doi: 10.1146/annurev.fl.05.010173.001505 [4] Curran E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138-1148. doi: 10.2514/2.5875 [5] Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28: 323-360. doi: 10.1146/annurev.fl.28.010196.001543 [6] Fry R S. A century of ramjet propulsion technology evolu-tion[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. doi: 10.2514/1.9178 [7] 俞刚, 范学军. 超声速燃烧与高超声速推进[J]. 力学进展, 2013, 43(5): 449-471. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htmYu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5): 449-471(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201305001.htm [8] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. doi: 10.3321/j.issn:1000-0992.2009.06.011Wang Z G, Liang J H, Ding M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.011 [9] Urzay J. Supersonic combustion in air-breathing propul-sion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. doi: 10.1146/annurev-fluid-122316-045217 [10] Peebles C. Eleven seconds into the unknown: a history of the hyper-X program[M]. AIAA, 2011. [11] Tsien H S, Beilock M. Heat source in a uniform flow[J]. Journal of the Aeronautical Sciences, 1949: 756-756. [12] Birzer C, Doolan C J. Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25(6): 1220-1225. doi: 10.2514/1.43716 [13] O'Brien T F, Starkey R P, Lewis M J. Quasi-one-dimensional high-speed engine model with finite-rate chemistry[J]. Journal of Propulsion and Power, 2001, 17(6): 1366-1374. doi: 10.2514/2.5889 [14] Vanyai T, Bricalli M, Brieschenk S, et al. Scramjet performance for ideal combustion processes[J]. Aerospace Science and Technology, 2018, 75: 215-226. doi: 10.1016/j.ast.2017.12.021 [15] Riggins D W, Mcclinton C R, Rogers R C, et al. Investigation of scramjet injection strategies for high Mach number flows[J]. Journal of Propulsion and Power, 1995, 11(3): 409-418. doi: 10.2514/3.23859 [16] Riggins D W, Mcclinton C R, Vitt P H. Thrust losses in hypersonic engines Part 1: Methodology[J]. Journal of Propulsion and Power, 1997, 13(2): 281-287. doi: 10.2514/2.5160 [17] Sislian J P, Martens R P, Schwartzentruber T E, et al. Numerical simulation of a real shcramjet flowfield[J]. Journal of Propulsion and Power, 2006, 22(5): 1039-1048. doi: 10.2514/1.14895 [18] Chan J, Sislian J P, Alexander D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. doi: 10.2514/1.48144 [19] Alexander D C, Sislian J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951 [20] Wang Y W, Sislian J P. Numerical simulation of gaseous hydrocarbon fuel injection in a hypersonic inlet[J]. Journal of Propulsion and Power, 2010, 26(5): 1114-1124. doi: 10.2514/1.47741 [21] Denman Z J, Chan W Y K, Brieschenk S, et al. Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1462-1471. doi: 10.2514/1.B36099 [22] Zhang Z J, Ma K F, Zhang W S, et al. Numerical investigation of a Mach 9 oblique detonation engine with fuel pre-injection[J]. Aerospace Science and Technology, 2020, 105: 106054. doi: 10.1016/j.ast.2020.106054 [23] Ma K F, Zhang Z J, Liu Y F, et al. Aerodynamic principles of shock-induced combustion ramjet engines[J]. Aerospace Science and Technology, 2020, 103: 105901. doi: 10.1016/j.ast.2020.105901 [24] Zhang Z J, Wen C Y, Zhang W S, et al. Formation of stabilized oblique detonation waves in a combustor[J]. Combustion and Flame, 2021, 223: 423-436. doi: 10.1016/j.combustflame.2020.09.034 [25] 沈欢, 张子健, 刘云峰, 等. 超燃冲压发动机推进性能理论分析[J]. 气体物理, 2018, 3(1): 12-19. doi: 10.19527/j.cnki.2096-1642.2018.01.002Shen H, Zhang Z J, Liu Y F, et al. Analysis on the propulsion performance of scramjet engine[J]. Physics of Gases, 2018, 3(1): 12-19(in Chinese). doi: 10.19527/j.cnki.2096-1642.2018.01.002 [26] 马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750Ma K F, Zhang Z J, Liu Y F, et al. Flow mechanism of oblique detonation engines[J]. Physics of Gases, 2019, 4(3): 1-10(in Chinese). doi: 10.19527/j.cnki.2096-1642.0750 [27] Menter F R. 2-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149 [28] Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combus-tion[J]. NASA TP-2791, 1988. [29] 张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020.Zhang Z J. Oblique detonation propulsion theory, technology and its experimental demonstration[D]. Beijing: University of Chinese Academy of Sciences, 2020(in Chinese). -