主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

初始角度对平板自由下落运动的影响

梁彬 张石玉 付增良

梁彬, 张石玉, 付增良. 初始角度对平板自由下落运动的影响[J]. 气体物理, 2021, 6(6): 73-82. doi: 10.19527/j.cnki.2096-1642.0848
引用本文: 梁彬, 张石玉, 付增良. 初始角度对平板自由下落运动的影响[J]. 气体物理, 2021, 6(6): 73-82. doi: 10.19527/j.cnki.2096-1642.0848
LIANG Bin, ZHANG Shi-yu, FU Zeng-liang. Influence of Initial Angle on the Freely Falling Plates[J]. PHYSICS OF GASES, 2021, 6(6): 73-82. doi: 10.19527/j.cnki.2096-1642.0848
Citation: LIANG Bin, ZHANG Shi-yu, FU Zeng-liang. Influence of Initial Angle on the Freely Falling Plates[J]. PHYSICS OF GASES, 2021, 6(6): 73-82. doi: 10.19527/j.cnki.2096-1642.0848

初始角度对平板自由下落运动的影响

doi: 10.19527/j.cnki.2096-1642.0848
基金项目: 

国家自然科学基金 11402253

详细信息
    作者简介:

    梁彬(1987-)男, 高工, 主要研究方向为流体力学、风洞试验技术.E-mail: zippolb@163.com

  • 中图分类号: V211.74

Influence of Initial Angle on the Freely Falling Plates

  • 摘要: 平板的自由下落是一个经典的流体力学-动力学耦合问题,且具有明显的非线性特性.针对二维平板自由下落的非线性特性,文章通过耦合求解N-S方程和运动方程,以期认识其非线性特征.从不同初始角度对平板自由下落状态和轨迹的影响出发,分析了运动状态的相轨线和频谱特性,以及其中的非线性系统特征.研究发现,在平板自由下落初期,不同初始角度下平板呈现不同的运动状态和轨迹,常为非周期性摆动或小幅翻滚运动.在自由下落后期,平板自由下落最终呈现周期性摆动或翻滚运动,运动模态归为一致,初始角度对该模态没有影响.

     

  • 图  1  坐标系和状态变量示意图

    Figure  1.  Definition of the state variables and sketchof the reference frame

    图  2  平板外形和计算网格

    Figure  2.  Plate shape and computational grids

    图  3  θ-ω+相轨迹和u+-v+曲线(I+=0.03)

    Figure  3.  θversusω+ and u+versusv+(I+=0.03)

    图  4  平板自由下落运动轨迹(I+=0.03)

    Figure  4.  Trajectories of freely falling plates (I+=0.03)

    图  5  频谱分析结果(I+=0.03)

    Figure  5.  Result of spectrum analysis (I+=0.03)

    图  6  无量纲速度和气动力变化曲线(I+=0.03, θ0=20°)

    Figure  6.  Dimensionless velocities and aerodynamic force components (I+=0.03, θ0=20°)

    图  7  θ-ω+相轨迹和u+-v+曲线(I+=0.03, θ0=0°, θ0=90°)

    Figure  7.  θ versus ω+ and u+ versus v+(I+=0.03, θ0=0°, θ0=90°)

    图  8  θ-ω+相轨迹和u+-v+曲线(I+=0.01)

    Figure  8.  θ versus ω+ and u+ versus v+(I+=0.01)

    图  9  θ-ω+相轨迹和u+-v+曲线(I+=0.5)

    Figure  9.  θ versus ω+ and u+ versus v+(I+=0.5)

    图  10  平板自由下落运动轨迹(I+=0.01)

    Figure  10.  Trajectories of freely falling plates (I+=0.01)

    图  11  平板自由下落运动轨迹(I+=0.5)

    Figure  11.  Trajectories of freely falling plates (I+=0.5)

    图  12  θ-ω+相轨迹和u+-v+曲线(I+=1.0)

    Figure  12.  θ versus ω+ and u+ versus v+(I+=1.0)

    图  13  平板自由下落运动轨迹(I+=1.0)

    Figure  13.  Trajectories of freely falling plates (I+=1.0)

    图  14  无量纲速度和气动力变化曲线(I+=1.0, θ0=20°)

    Figure  14.  Dimensionless velocities and aerodynamic force components (I+=1.0, θ0=20°)

    图  15  u+-v+曲线(I+=5.0)

    Figure  15.  u+ versus v+(I+=5.0)

  • [1] Maxwell J C. On a particular case of the descent of a heavy body in a resisting medium[J]. Cambridge and Dublin Mathematics Journal, 1853, 9: 115-118.
    [2] Andersen A, Pesavento U, Wang Z J. Unsteady aerodynamics of fluttering and tumbling plates[J]. Journal of Fluid Mechanics, 2005, 541: 65-90. doi: 10.1017/S002211200500594X
    [3] Pesavento U, Wang Z J. Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation[J]. Physical Review Letters, 2004, 93(14): 144501. doi: 10.1103/PhysRevLett.93.144501
    [4] Belmonte A, Eisenberg H, Moses E. From flutter to tumble: inertial drag and Froude similarity in falling paper[J]. Physical Review Letters, 1998, 81(2): 345-348. doi: 10.1103/PhysRevLett.81.345
    [5] Assemat P, Fabre D, Magnaudet J. The onset of unsteadiness of two-dimensional bodies falling or rising freely in a viscous fluid: a linear study[J]. Journal of Fluid Mechanics, 2012, 690: 173-202. doi: 10.1017/jfm.2011.419
    [6] Wan H, Dong H B, Liang Z X. Vortex formation of freely falling plates[R]. AIAA 2012-1079, 2012.
    [7] Tian R J, Shu F J. Experimental study of the fluid and structure interaction for gravity driven falling plates[C]. Proceedings of the 67th Annual Meeting of the APS Division of Fluid Dynamics, San Francisco: APS, 2014.
    [8] Tian R J. Experimental and theoretical study of fluid-structure interactions in plunging hydrofoils and gravity-driven falling plates[D]. Las Cruces: New Mexico State University, 2015: 77-85.
    [9] Kubota Y, Mochizuki O. Numerical investigation of aerodynamic characteristics by a rotating thin plate[J]. World Journal of Mechanics, 2015, 5(3): 42-47. doi: 10.4236/wjm.2015.53005
    [10] 周琪. 自由下落平板非定常致力机理研究[D]. 上海: 上海交通大学, 2012.

    Zhou Q. The study of unsteady aerodynamics of freely falling plates[D]. Shanghai: Shanghai Jiao Tong University, 2012(in Chinese).
    [11] 蔡琛芳, 梁彬. 平板自由下落的数值模拟[J]. 空气动力学学报, 2019, 37(3): 400-405, 411. doi: 10.7638/kqdlxxb-2016.0129

    Cai C F, Liang B. Numerical simulation of freely falling plates[J]. Acta Aerodynamica Sinica, 2019, 37(3): 400-405, 411(in Chinese). doi: 10.7638/kqdlxxb-2016.0129
    [12] Lentink D, Dickson W B, van Leeuwen J L, et al. Leading-edge vortices elevate lift of autorotating plant seeds[J]. Science, 2009, 324(5933): 1438-1440. doi: 10.1126/science.1174196
    [13] Lee E J, Lee S J. Effect of initial attitude on autorotation flight of maple Samaras (Acer palmatum)[J]. Journal of Mechanical Science and Technology, 2016, 30(2): 741-747. doi: 10.1007/s12206-016-0129-2
    [14] Kim Y, Peskin C S. A penalty immersed boundary method for a rigid body in fluid[J]. Physics of Fluids, 2016, 28(3): 033603. doi: 10.1063/1.4944565
    [15] Magnaudet J, Eames I. The motion of high-Reynolds-number bubbles in inhomogeneous flows[J]. Annual Review of Fluid Mechanics, 2000, 32: 659-708. doi: 10.1146/annurev.fluid.32.1.659
    [16] 孙茂. 动物飞行的空气动力学[J]. 空气动力学学报, 2018, 36(1): 122-128. doi: 10.7638/kqdlxxb-2017.0195

    Sun M. Aerodynamics of animal flight[J]. Acta Aerodynamica Sinica, 2018, 36(1): 122-128(in Chinese). doi: 10.7638/kqdlxxb-2017.0195
    [17] 鲍锋, 邹赫, 曾华轮, 等. 扑翼尾流脱落涡特性的PIV实验研究[J]. 气体物理, 2017, 2(1): 48-56. doi: 10.19527/j.cnki.2096-1642.2017.01.006

    Bao F, Zou H, Zeng H L, et al. Experimental investigation with PIV on characteristics of shedding vortices in wake of flapping wings[J]. Physics of Gases, 2017, 2(1): 48-56(in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.01.006
    [18] 贾博博, 宫武旗. 串列扑翼间前缘涡在不同间距下对平均推力的影响[J]. 气体物理, 2017, 2(3): 44-53. doi: 10.19527/j.cnki.2096-1642.2017.03.006

    Jia B B, Gong W Q. Influence of leading-edge vortex on mean thrust of two plunging wings in tandem under different spacing distances[J]. Physics of Gases, 2017, 2(3): 44-53(in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.03.006
    [19] 黄安基. 非线性振动[M]. 成都: 西南交通大学出版社, 1993: 12-53.

    Huang A J. Nonlinear oscillations[M]. Chengdu: Southwest Jiaotong University Press, 1993: 12-53(in Chinese).
    [20] 关发明. 超声速平面混合层非线性失稳[D]. 北京: 中国航天空气动力技术研究院, 2008.

    Guan F M. Nonlinear instability of supersonic planar mixing layer[D]. Beijing: China Academy of Aerospace Aerodynamics, 2008(in Chinese).
  • 加载中
图(15)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  28
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-05-27

目录

    /

    返回文章
    返回