Review on out of Control Inducement and Criteria of Operation and Stability of High Speed Vehicle
-
摘要: 首先介绍了高速飞行器设计所面临的静稳定裕度、航向操纵性、三通道耦合、安全边界等问题,进一步梳理了高速飞行器的失控成因,包括飞行环境、飞行姿态、控制耦合、惯性耦合、动力学耦合等因素,在此基础上,回顾了一系列适用于飞行器设计的典型抗失控判据,如横航向稳定性参数、动态航向稳定性参数、横/航向操纵偏离参数、Weissman组合判据、横向稳定性特征参数等.这些参数或判据不仅可以在设计初期预测气动布局的好坏及其对操稳特性的影响,帮助工程师改进气动布局以使飞行器获得最佳的性能,还可用来预测飞行器在当前气动布局下所需要的控制资源以帮助飞行器合理应对耦合的影响,最后在设计完成后还可用这些判据分析飞行器飞行过程中的稳定性以及控制策略的合理性.Abstract: The confusion faced by the high speed aircraft design, such as static stability, directional control, three channel coupling and safety limits, was introduced at the beginning of the paper. On the basis of combing the causes of high speed aircraft out of control, a series of operation and stability criteria suitable for aircraft design have been summarized in the paper. These criteria include lateral/directional aerodynamic static stability, dynamic directional stability parameter, lateral control (or aileron alone) departure parameter, Weissman criterion plane, lateral-directional stability dominant parameter and so on. Such criteria can not only predict the quality of aerodynamic layout and its influence on operation and stability characteristics in the early stage of aircraft design, but also can help engineers to improve the aerodynamic layout to get better performance of aircrafts. The control resources related to aircraft layout can be forecasted by the criteria, which help the aircraft cope with the influence of coupling reasonably. Finally, these criteria can be used to analyze the stability in the flight process and the rationality of the control strategy after the design.
-
表 1 耦合特性引发飞行事故一览表
Table 1. List of flight accidents caused by the coupling characteristics
times vehicles Ma accidents/events causes 1953.12 Bell X-1A 2.44 The aircraft was temporatily out of control, with the ±8g normal overload appeared alternately, and the pilot fell into a semi-coma rolling inertia coupling 1954.10 X-3 / The aircraft rolled quickly to the left, and the angle of attack and sideslip deviated by more than 20°, causing the plane to get out of control inertia coupling 1954.10 F-100A / Inertial coupling induced the aircraft to get out of control, causing serious injuries to the pilot inertia coupling 1955 YF-102 / Inertial coupling caused roll angle deviation of up to -30° and angle of attack deviation of -12° inertia coupling 1956.9 Bell X-2 3.2 Rolling control induced the directional departure, further induced ±6g normal overload alternately, and finally the aircraft entered sub-sonic spin lateral-directional static coupling 1959 X-15X-15A-2 6.7 The ventral fin caused roll instability and induced side slip oscillation. After the removal of the ventral fin, the rolling static stability and direction dynamic stability were improved lateral-directional dynamic coupling 表 2 判据的适用条件
Table 2. Application of the criteria
parameters application conditions Cnβ>0,Clβ < 0 positive lateral/directional aerodynamic static stability, open-loop static stability criteria Cnβ, dyn>0,LCDP(AADP)>0 suitable for open-loop, symmetric, steady-state flight situations αβ>0, αβ>αδ another form of expression of Cnβ, dyn and LCDP Weissman criterion combined open and closed-loop lateral/directional departure/spin susceptibility criteria, suitable for open-loop, symmetric, steady-state flight situations 1/Tθ3>0 predict the closed-loop divergence of the longitudinal, lateral and directional coupling Cnβ, cop>0,Cmα, cop <0, K>0 predict the open-loop divergence of asymmetric flight, suitable for large nonlinearity and large angle of attack Cnβ-Clβcriterion plane empirical static stability design charts applicable to large angle transient maneu-vering flight 1/T1>-0.5 a closed-loop departure parameter in terms of preventing uncommanded motion via roll control inputs, applicable to augmented aircraft Cnβ, app>0 open-loop lateral/directional static departure susceptibility criterion that includes the static effect of the controls Kalviste dynamic stability parameters predict open-loop stability of an aircraft in steady maneuverinig flight LSDP reflects which is dominant in the lateral or deirectional stability kari-1/CP criteria plane helpful to select an effective lateral/directional control strategy according to the characteristc parameters of the criterion -
[1] Phillips W H. Effect of steady rolling on longitudinal and directional stability[R]. NACA-TN-1627, 1948. [2] 祝立国, 赵俊波, 叶友达. 高速飞行器耦合失稳分析及应用[M]. 北京: 国防工业出版社, 2015: 1-8.Zhu L G, Zhao J B, Ye Y D. Coupling departure analysis and applications of high speed aircrafts[M]. Beijing: National Defense Industry Press, 2015: 1-8(in Chinese). [3] 蔡巧言, 杜涛, 朱广生. 新型高超声速飞行器的气动设计技术探讨[J]. 宇航学报, 2009, 30(6): 2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006Cai Q Y, Du T, Zhu G S. Discussion on aerodynamiac design technology of new high speed aircraft[J]. Journal of Astronautics, 2009, 30(6): 2086-2091(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.006 [4] 包为民. 航天飞行器控制技术研究现状与发展趋势[J]. 自动化学报, 2013, 39(6): 697-702.Bao W M. Present situation and development tendency of aerospace control techniques[J]. Acta Automatica Sinica, 2013, 39(6): 697-702(in Chinese). [5] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(1): 201410.Zhang L P, Ma R, Chang X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(1): 201410(in Chinese). [6] 李锋, 杨云军, 刘周, 等. 飞行器气动/飞行/控制一体化耦合模拟技术[J]. 空气动力学学报, 2015, 33(2): 156-161. doi: 10.7638/kqdlxxb-2014.0097Li F, Yang Y J, Liu Z, et al. Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2): 156-161(in Chinese). doi: 10.7638/kqdlxxb-2014.0097 [7] Moul M T, Paulson J W. Dynamic lateral behavior of high-performance aircraft[R]. NACA-RM-L58E16, 1958. [8] Hodgkinson J. Prediction of lateral and directional divergence at high angles of attack[R]. AIAA 71-0766, 1971. [9] Gomez A V, Curry D M, Johnston C C. Radiative, ablative, and active cooling thermal protection studies for the leading edge of a fixed-straight wing space shuttle[R]. AIAA 1971-445, 1971. [10] Weissman R. Development of design criteria for predicting departure Characteristics and spin susceptibility of fighter-type aircraft[R]. AIAA 1972-984, 1972. [11] Seltzer R M. Investigation of current and proposed aircraft departure susceptibility criteriawith application to future fighter aircraft[R]. NADC-90048-60, 1990. [12] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022Zhu L G, Wang Y F, Zhuang F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.022 [13] 祝立国, 王永丰, 庄逢甘, 等. Weissman图的产生、发展及其在再入航天飞行器气动布局设计的应用[J]. 宇航学报, 2009, 30(1): 13-17. doi: 10.3873/j.issn.1000-1328.2009.00.003Zhu L G, Wang Y F, Zhuang F G, et al. The derivation, development of Weissman chart and applications on configuration design of reentry vehicle[J]. Journal of Astronautics, 2009, 30(1): 13-17(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.00.003 [14] Seltzer R M, Calvert J F. Application of current departure resistance criteria to the post-stall maneuvering envelope[R]. AGARD-CP-548, 1993. [15] Day R E, Reisert D. Flight behavior of the X-2 research airplane to a Mach number of 3.20 and a geometric altitude of 126, 200 Feet[R]. NASA-TM-X-137, 1959. [16] Day R E, Fischel J. Stability and control characteristics obtained during demonstration of the Douglas X-3 research airplane[R]. NACA-RM-H55E16, 1955. [17] Weil J. Review of the X-15 program[R]. NASA-TN-D-1278, 1962. [18] Thompson M O. At the edge of space: the X-15 project[R]. NASA tmx-57072, 1961. [19] Patersen F S, Rediess H A, Weil J. "Lateral-directional control characteristics", research-airplane -committee report on the conference on the progress of the x-15 project[R]. NASA TMX 57072, 1961. [20] Petersen F S, Rediess H A, Weil J. Lateral-directional control characteristics of the X-15 airplane[R]. NASA-TM-X-726, 1962. [21] Taylor L W Jr. Analysis of a pilot airplane lateral instability experienced with the X-15 airplane[R]. NASA-TN-D-1059, 1961. [22] Weissman R. Status of design criteria for predicting departure characteristics and spin susceptibility[R]. AIAA 1974-791, 1974. [23] Weissman R. Preliminary criteria for predicting departure characteristics/spin susceptibility of fighter-type aircraft[J]. Journal of Aircraft, 1973, 10(4): 214-219. doi: 10.2514/3.60216 [24] Titiriga Jr A, Ackermanm J S, Skow A M. Design technology for departure resistance of fighter aircraft[C]. Stall/Spin Problems of Military Aircraft, AGARD Conference Proceedings No. 199, June 1976. [25] Johnston D E, Mitchell D G, Myers T T. Investigation of high-angle-of-attack maneuver-limiting factors. part 1: analysis and simulation[C]. AFWAL-TR-80-3141, Pt. I, September 1980. [26] Johnston D E, Hogge J R. The effect of non-symmetric flight on aircraft high angle of attack handling qualities and departure Characteristics[R]. AIAA 1974-792, 1974. [27] Kalviste J. Aircraft stability characteristics at high angles of attack[C]. AGARD Conference Proceedings, 235, 1978. [28] Bihrle W Jr, Barnhart B, Pantason P. Static aerodynamic characteristics of a typical single-engine low-wing general aviation design for an angle-of-attack range of-8 deg to 90 deg[R]. NASA-CR-2971, 1978. [29] Pelikan R J. F/A-18 high angle of attack departure resistant criteria for control law development[R]. AIAA 1983-2126, 1983. [30] Kalviste J, Eller B. Coupled static and dynamic stability parameters[R]. AIAA 1989-3362, 1989. [31] Lee H P, Chang M, Kaiser M K. Flight dynamics and stability and control characteristics of the X-33 technology demonstrator vehicle[R]. AIAA 1998-4410, 1998. [32] Chaudhary A, Nguyen V, Tran H, et al. Dynamics and stability and control characteristics of the X-37[R]. AIAA 2001-4383, 2001. [33] Ishimoto S, Takizawa M, Suzuki H, et al. Flight control system of hypersonic flight experiment vehicle[R]. AIAA 1996-3403, 1996. [34] Inatani Y, Kawaguchi J, Yonemoto K. Status of 'HIMES' reentry flight test project[R]. AIAA 1990-5230, 1990. [35] 陈功, 唐志共, 王文正, 等. Weissman准则在升力式再入飞行器设计中的应用[J]. 飞行力学, 2019, 37(3): 68-73.Chen G, Tang Z G, Wang W Z, et al. Application of Weissman criterion in the design of lift reentry vehicle[J]. Flight Dynamics, 2019, 37(3): 68-73(in Chinese). [36] 蔡硕. 无垂尾飞行器气动布局优化与横航向稳定性分析[D]. 杭州: 浙江大学, 2018.Cai S. Aerodynamic shape optimization and lateral-directional stability analysis for vertical-tailless aircraft[D]. Hangzhou: Zhejiang University, 2018(in Chinese). [37] 曹玉腾, 王晓东, 倪少波. 再入飞行器偏离稳定判据的研究与应用[J]. 航天控制, 2012, 30(6): 7-12.Cao Y T, Wang X D, Ni S B. The research and application of re-entry aerocraft departure susceptibility criteria[J]. Aerospace Control, 2012, 30(6): 7-12(in Chinese). -