主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器激波干扰区缝隙流动传热特性研究

李宗阳 窦怡彬 任智毅 陆云超 陈俊铭

李宗阳, 窦怡彬, 任智毅, 陆云超, 陈俊铭. 高超声速飞行器激波干扰区缝隙流动传热特性研究[J]. 气体物理, 2024, 9(2): 1-8. doi: 10.19527/j.cnki.2096-1642.1100
引用本文: 李宗阳, 窦怡彬, 任智毅, 陆云超, 陈俊铭. 高超声速飞行器激波干扰区缝隙流动传热特性研究[J]. 气体物理, 2024, 9(2): 1-8. doi: 10.19527/j.cnki.2096-1642.1100
LI Zongyang, DOU Yibin, REN Zhiyi, LU Yunchao, CHEN Junming. Heat Transfer Characteristics of Gap Flows in Shock-Wave Interference Region of Hypersonic Vehicles[J]. PHYSICS OF GASES, 2024, 9(2): 1-8. doi: 10.19527/j.cnki.2096-1642.1100
Citation: LI Zongyang, DOU Yibin, REN Zhiyi, LU Yunchao, CHEN Junming. Heat Transfer Characteristics of Gap Flows in Shock-Wave Interference Region of Hypersonic Vehicles[J]. PHYSICS OF GASES, 2024, 9(2): 1-8. doi: 10.19527/j.cnki.2096-1642.1100

高超声速飞行器激波干扰区缝隙流动传热特性研究

doi: 10.19527/j.cnki.2096-1642.1100
详细信息
    作者简介:

    李宗阳(1991—)男, 硕士, 工程师, 主要研究飞行器气动热及热防护设计。E-mail: 1192009609@qq.com

  • 中图分类号: V211

Heat Transfer Characteristics of Gap Flows in Shock-Wave Interference Region of Hypersonic Vehicles

  • 摘要: 针对高超声速飞行器激波干扰区附近缝隙流动传热问题, 建立激波发生器和缝隙的二维模型, 利用CFD仿真分析技术, 分别研究了激波作用于缝隙前、缝隙中和缝隙后情况下缝隙内部流动传热特性。结果表明, 相比较无激波的状态, 激波作用于缝隙前和缝隙中时, 会明显改变缝隙内部流体的旋涡结构, 使得缝隙内部流动强度和热量急剧增加; 当激波作用于缝隙后部时, 缝隙内部流体的旋涡结构没有明显改变, 且靠近缝隙口的远端壁面热流有局部降低, 有利于热防护结构的维型。研究结果表明, 结构热防护设计时应避免激波作用在缝隙前部和中部的位置。

     

  • 图  1  实验模型示意图

    Figure  1.  Sketch of experimental model

    图  2  不同网格密度的缝隙网格

    Figure  2.  Gap grids with different mesh densities

    图  3  缝隙内旋涡分布

    Figure  3.  Distribution of vortex structures in gaps

    图  4  缝隙热流数值模拟与实验对比

    Figure  4.  Comparison of gap heat flux between numerical simulation and experiment

    图  5  激波发生器与缝隙的二维模型

    Figure  5.  Two-dimensional model of shock wave generator and gap

    图  6  不同激波位置缝隙内部的旋涡结构

    Figure  6.  Vortex structures inside the gap at different shock wave positions

    图  7  缝隙内Y向速度云图分布

    Figure  7.  Distribution of Y-direction velocity inside the gap

    图  8  缝隙内部温度云图分布

    Figure  8.  Distribution of temperature inside the gap

    图  9  不同激波位置下缝隙远端壁面热流曲线

    Figure  9.  Heat flux curves on the far-end wall of the gap at different shock wave positions

    图  10  不同激波位置下缝隙底部壁面热流曲线

    Figure  10.  Heat flux curves in the bottom of the gap at different shock wave positions

  • [1] Hinderks M, Radespiel R, Gülhan A. Simulation of hypersonic gap flow with consideration of fluid structure interaction[R]. AIAA 2004-2238, 2004.
    [2] 王庆洋, 丛堃林, 刘丽丽, 等. 临近空间高超声速飞行器气动力及气动热研究现状[J]. 气体物理, 2017, 2(4): 46-55. doi: 10.19527/j.cnki.2096-1642.2017.04.005

    Wang Q Y, Cong K L, Liu L L, et al. Research status on aerodynamic force and heat of near space hypersonic flight vehicle[J]. Physics of Gases, 2017, 2(4): 46-55(in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.04.005
    [3] Wieting A R. Experimental investigation of heat-transfer distributions in deep cavities in hypersonic separated flow[R]. NASA TN D-5908, 1970.
    [4] Paolicchi L T, Santos W F. Length-to-depth ratio effects on aerodynamic surface quantities of a rarefied hypersonic gap flow[R]. AIAA 2013-2789, 2013.
    [5] Palmer G, Kontinos D, Sherman B. Surface heating effects of X-33 vehicle TPS panel bowing, steps, and gaps[R]. AIAA 98-0865, 1998.
    [6] 童秉纲. 航天飞机防热瓦缝隙气动加热的讨论[J]. 气动实验与测量控制, 1990, 4(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199004000.htm

    Tong B G. A qualitative study of tile gap heating on space shuttle[J]. Aerodynamic Experiment and Measurement & Control, 1990, 4(4): 1-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199004000.htm
    [7] 唐功跃, 吴国庭, 姜贵庆. 缝隙流动分析及其热环境的工程计算[J]. 中国空间科学技术, 1996, 16(6): 1-7, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ606.000.htm

    Tang G Y, Wu G T, Jiang G Q. Flow analysis and numerical computation of thermal environment in gaps[J]. Chinese Space Science and Technology, 1996, 16(6): 1-7, 38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ606.000.htm
    [8] 张昊元, 宗文刚, 桂业伟. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201408006.htm

    Zhang H Y, Zong W G, Gui Y W. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8): 893-900(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201408006.htm
    [9] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511002.htm

    Qiu B, Zhang H Y, Guo Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3515-3521(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511002.htm
    [10] 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006.

    Yan C. Method and application of computational fluid dynamics[M]. Beijing: Beihang University Press, 2006(in Chinese).
    [11] Yoon S, Jameson A. Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. doi: 10.2514/3.10007
    [12] Bohr T, Jensen M H, Paladin G, et al. Dynamical systems approach to turbulence[M]. Cambridge: Cambridge University Press, 2005.
    [13] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [14] 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212005.htm

    Liu J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2192-2201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212005.htm
    [15] 杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报, 2014, 35(1): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201401011.htm

    Yang J G, Wu H. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 116-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201401011.htm
    [16] Liu F, Zheng X Q. A strongly coupled time-marching method for solving the Navier-Stokes and k-ω turbulence model equations with multigrid[J]. Journal of Computational Physics, 1996, 128(2): 289-300. doi: 10.1006/jcph.1996.0211
    [17] 张亮, 程晓丽, 艾邦成. 高超声速气动热数值模拟法向网格准则[J]. 力学与实践, 2014, 36(6): 722-727, 741. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201406005.htm

    Zhang L, Cheng X L, Ai B C. Normal grid rule for hypersonic heat flux numerical simulation[J]. Mechanics in Engineering, 2014, 36(6): 722-727, 741(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201406005.htm
  • 加载中
图(10)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  13
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2023-12-26

目录

    /

    返回文章
    返回