主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速进气道复杂内流热气动弹性研究

叶坤 张艺凡 叶正寅

叶坤, 张艺凡, 叶正寅. 高超声速进气道复杂内流热气动弹性研究[J]. 气体物理, 2023, 8(6): 1-19. doi: 10.19527/j.cnki.2096-1642.1053
引用本文: 叶坤, 张艺凡, 叶正寅. 高超声速进气道复杂内流热气动弹性研究[J]. 气体物理, 2023, 8(6): 1-19. doi: 10.19527/j.cnki.2096-1642.1053
YE Kun, ZHANG Yi-fan, YE Zheng-yin. Research on Aerothermoelasticity for Hypersonic Inlet with Complex Internal Flow[J]. PHYSICS OF GASES, 2023, 8(6): 1-19. doi: 10.19527/j.cnki.2096-1642.1053
Citation: YE Kun, ZHANG Yi-fan, YE Zheng-yin. Research on Aerothermoelasticity for Hypersonic Inlet with Complex Internal Flow[J]. PHYSICS OF GASES, 2023, 8(6): 1-19. doi: 10.19527/j.cnki.2096-1642.1053

高超声速进气道复杂内流热气动弹性研究

doi: 10.19527/j.cnki.2096-1642.1053
基金项目: 

国家自然科学基金 12272306

国家自然科学基金 52175510

详细信息
    作者简介:

    叶坤(1987-)男, 副研究员, 主要研究方向为高超声速流固热耦合、气动弹性力学。E-mail: yekun@nwpu.edu.cn

  • 中图分类号: V211.47

Research on Aerothermoelasticity for Hypersonic Inlet with Complex Internal Flow

  • 摘要:

    高超声速进气道在复杂波系的气动载荷和气动热作用下非常容易诱发热气动弹性问题,深入理解复杂内流下热气动弹性机理对未来高超声速进气道的精细化设计具有重要意义。建立了静/动热气动弹性动力学分析框架,深入研究了静/动热气动弹性对三维高超声速进气道流场结构和性能影响的规律和机理。静热气动弹性分析结果表明,双向耦合方法得到的气动热弹性变形相对较大,入口唇前缘变形量最大。结构变形改变了唇缘附近的激波结构,增强了进气道内部的激波强度,增加了分离区长度和外壁面温度,改变了出口流场。同时,热气动弹性变形会导致质量流量系数和压升比的增大,降低了总压恢复系数。动热气动弹性分析结果表明,对于模型,不考虑气动加热时,结构位移响应逐渐呈现收敛趋势;考虑气动加热后,结构位移响应呈现极限环的趋势。气动加热可能会改变进气道结构动态响应特征。由于进气道结构频率非常接近,结构动力响应中存在着"拍"现象。前缘变形较大而振幅较小,尾缘变形较小而振幅较大。结构振动导致流场结构产生明显的动态变化,且导致性能参数存在明显的波动,尤其是出口反压比波动幅度较大。希望通过研究加深对进气道中复杂波系结构中热气动弹性问题的理解与认识,以期为未来进气道的精细化设计提供参考。

     

  • 图  1  热气动弹性分析框架

    Figure  1.  Aerothermoelastic analysis framework

    图  2  计算的压力分布与实验数据的对比

    Figure  2.  Comparison of pressure coefficient between calculated results and experimental data

    图  3  机翼变形云图和展向变形量的对比

    Figure  3.  Deformation contour and comparison

    图  4  计算极限环幅值随动压的变化与文献结果的对比

    Figure  4.  Comparison of the variation of limit cycle amplitude with dynamic pressure

    图  5  进气道模型(单位:mm)

    Figure  5.  Three-dimensional inlet aerodynamic model (unit: mm)

    图  6  有限元模型及网格

    Figure  6.  Finite element model and grid

    图  7  计算网格

    Figure  7.  Computational grid

    图  8  不同网格尺度下中间剖面上压力和温度分布的对比

    Figure  8.  Comparison of the pressure coefficient and the temperature under different grid scales

    图  9  监测点位移变化历程

    Figure  9.  Displacement change of the observation point with coupling step in three cases

    图  10  中间剖面位移量的对比

    Figure  10.  Comparison of displacement distribution at the middle section in three cases

    图  11  不同耦合方法下的热气动弹性变形云图

    Figure  11.  Aerothermoelastic deformation contour by different methods

    图  12  进气道中间剖面上的压力分布的对比

    Figure  12.  Comparison of pressure coefficient at the middle section

    图  13  不同计算方式下物面压力系数云图的对比

    Figure  13.  Comparison of pressure contour on the wall by different methods

    图  14  中间剖面压力云图对比

    Figure  14.  Comparison of pressure contour at the middle section

    图  15  温度分布的对比

    Figure  15.  Comparison of temperature distribution at the middle section

    图  16  中间剖面二维流线对比

    Figure  16.  Comparison of 2D streamline at the middle section

    图  17  三维空间流线对比

    Figure  17.  Comparison of 3D streamline

    图  18  出口中间剖面上压力分布的对比

    Figure  18.  Comparison of pressure distribution at the middle section of the exit

    图  19  进气道出口压力云图对比

    Figure  19.  Comparison of pressure contours at the exit

    图  20  进气道性能参数随耦合步数的变化

    Figure  20.  Performance parameter change with coupling step

    图  21  不同时间步长下位移和总压恢复系数随时间的变化

    Figure  21.  Displacement and total pressure recovery coefficient with time at different time steps

    图  22  动力学响应监测点位置示意图

    Figure  22.  Locations of the monitoring points for dynamic response

    图  23  监测点的位移随时间的变化及其功率谱分析

    Figure  23.  Displacement of the monitoring points with time and power spectrum analysis

    图  24  瞬时物面位移云图

    Figure  24.  Comparison of transient aerothermoelastic deformation contour

    图  25  瞬时物面压力分布

    Figure  25.  Comparison of transient pressure coefficient contour

    图  26  瞬时三维空间流线

    Figure  26.  Comparison of transient 3D streamline

    图  27  二维中间剖面流线图

    Figure  27.  Comparison of transient 2D streamline at the middle section

    图  28  瞬态出口压力云图

    Figure  28.  Comparison of the transient pressure contour at the exit

    图  29  进气道性能参数随时间的变化及其功率谱分析

    Figure  29.  Inlet performance parameters with time and power spectrum analysis

    表  1  进气道分离区起始、终止位置以及长度的对比

    Table  1.   Comparison of the location and length of the separation zone in four cases

    methods xstart/m xend/m L/m
    rigid model 8.177 8.624 0.447
    without heating 8.148 8.629 0.481
    one-way coupling 8.114 8.648 0.534
    two-way coupling 8.106 8.656 0.550
    下载: 导出CSV

    表  2  进气道性能参数对比

    Table  2.   Comparison of the performance parameters of the inlet

    parameter rigid without heating one-way coupling two-way coupling
    value value Δ/(%) value Δ/(%) value Δ/(%)
    φ 0.675 8 0.695 5 2.92 0.725 4 7.34 0.726 7 7.53
    σ 0.208 1 0.201 6 -3.12 0.190 1 -8.65 0.189 8 -8.79
    RP 16.313 16.928 3.77 17.980 10.22 18.021 10.47
    下载: 导出CSV

    表  3  进气道结构固有频率

    Table  3.   Natural mode frequency of the inlet structure

    mode order natural mode frequency/Hz
    without heating with heating
    1 48.919 28.497
    2 49.952 30.099
    3 54.361 32.725
    4 62.476 37.952
    5 67.864 41.509
    6 75.125 45.616
    7 92.967 56.734
    8 116.26 70.851
    9 135.59 78.202
    10 142.05 85.242
    下载: 导出CSV

    表  4  进气道性能参数时均值及波动幅度

    Table  4.   Time average and fluctuation amplitude of inlet performance parameters

    parameter without heating with heating
    rigid model time average value fluctuation amplitude time average value fluctuation amplitude
    φ 0.675 8 0.695 4 2.91% 0.724 8 7.25%
    σ 0.208 1 0.201 6 -3.11% 0.190 4 -8.49%
    RP 16.313 16.921 7 3.73% 18.019 4 10.46%
    下载: 导出CSV
  • [1] 姜宗林. 关于吸气式高超声速推进技术研究的思考[J]. 力学进展, 2009, 39(4): 398-405.

    Jiang Z L. Reasoning on development of air-breathing hypersonic propulsion technology[J]. Advances in Mechanics, 2009, 39(4): 398-405(in Chinese).
    [2] Chang J T, Li N, Xu K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22. doi: 10.1016/j.paerosci.2016.12.001
    [3] Mahapatra D, Jagadeesh G. Studies on unsteady shock interactions near a generic scramjet inlet[J]. AIAA Journal, 2009, 47(9): 2223-2232. doi: 10.2514/1.41954
    [4] Krishnan L, Sandham N D, Steelant J. Shock-wave/boundary-layer interactions in a model scramjet intake[J]. AIAA Journal, 2009, 47(7): 1680-1691. doi: 10.2514/1.41107
    [5] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1): 98-119.

    Yi S H, Chen Z, Zhu Y Z, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 98-119(in Chinese).
    [6] 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报, 2015, 36(1): 86-97.

    Tang Z G, Xu X B, Yang Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97(in Chinese).
    [7] Lamorte N, Friedmann P P, Dalle D J, et al. Uncertainty propagation in integrated airframe-propulsion system analy-sis for hypersonic vehicles[J]. Journal of Propulsion and Power, 2015, 31(1): 54-68. doi: 10.2514/1.B35122
    [8] Kline H L, Palacios F, Alonso J J. Sensitivity of the performance of a 3-dimensional hypersonic inlet to shape deformations[R]. AIAA 2014-3228, 2014.
    [9] Culler A J, McNamara J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393-2406. doi: 10.2514/1.J050617
    [10] Duzel U, Eyi S. The effects of static aeroelasticity on the performance of supersonic/hypersonic nozzles[R]. AIAA 2014-2770, 2014.
    [11] Yao C, Liu Z S, Wei J Q, et al. Effect of wall deformation on aerodynamic performance for mixed compression intake[R]. AIAA 2014-2445, 2014.
    [12] Yao C, Liu Z S, Ma R X, et al. Numerical vibration analysis of supersonic mixed-compression intake[C]. ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. San Antonio: ASME, 2013.
    [13] 张胜涛, 陈方, 刘洪. 高超声速进气道前缘流场-热-结构耦合分析[J]. 空气动力学学报, 2017, 35(3): 436-443.

    Zhang S T, Chen F, Liu H. Fluid-thermal-structural coupling analysis on leading edge of hypersonic inlets[J]. Acta Aerodynamica Sinica, 2017, 35(3): 436-443(in Chinese).
    [14] 靖建朋, 郭荣伟. 气动变形对独立模块薄壳进气道性能影响研究[J]. 宇航学报, 2011, 32(1): 210-218.

    Jing J P, Guo R W. Study on influence of pneumatic deformation on the performance of a single module inlet with thin shell[J]. Journal of Astronautics, 2011, 32(1): 210-218(in Chinese).
    [15] 张云峰. 高速气流作用下冲压发动机进气道壁板结构振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Zhang Y F. Study on virbartion characteristic of panel structures of ramjet inlet affected by high speed fluid flows[D]. Harbin: Harbin Institute of Technology, 2007(in Chinese).
    [16] 叶坤, 叶正寅, 屈展. 高超声速进气道气动弹性的影响研究[J]. 推进技术, 2016, 37(12): 2270-2277.

    Ye K, Ye Z Y, Qu Z. Effects of aeroelasticity on performance of hypersonic inlet[J]. Journal of Propulsion Technology, 2016, 37(12): 2270-2277(in Chinese).
    [17] Dai G Y, Zeng L, Jia H Y, et al. Preliminary study on the influence of aerothermoelastic deformation on 2-D hypersonic inlet performance[R]. AIAA 2017-2403, 2017.
    [18] 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.

    Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11(in Chinese).
    [19] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 87-105.

    Gui Y W, Liu L, Dai G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 87-105(in Chinese).
    [20] McNamara J J, Friedmann P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122. doi: 10.2514/1.J050882
    [21] 叶坤. 吸气式高速飞行器关键热气动弹性问题研究[D]. 西安: 西北工业大学, 2018.

    Ye K. Research on the critical aerothermoelastic problems for air-breathing hypersonic vehicle[D]. Xi'an: Northwestern Polytechnical University, 2018(in Chinese).
    [22] Lamorte N, Friedmann P P. Hypersonic aeroelastic and aerothermoelastic studies using computational fluid dynamics[J]. AIAA Journal, 2014, 52(9): 2062-2078. doi: 10.2514/1.J053018
    [23] Häberle J, Gülhan A. Experimental investigation of a two-dimensional and a three-dimensional scramjet inlet at Mach 7[J]. Journal of Propulsion and Power, 2008, 24(5): 1023-1034. doi: 10.2514/1.33546
    [24] Neumann J, Ritter M. Steady and unsteady aeroelastic simulations of the HIRENASD wind tunnel experiment[R]. IFASD 2009-132, 2019.
    [25] Dowell E H. Nonlinear oscillations of a fluttering plate[J]. AIAA Journal, 1966, 4(7): 1267-1275. doi: 10.2514/3.3658
    [26] 叶坤, 叶正寅, 屈展, 等. 高超声速舵面热气动弹性不确定性及全局灵敏度分析[J]. 力学学报, 2016, 48(2): 278-289.

    Ye K, Ye Z Y, Qu Z, et al. Uncertainty and global sensitivity analysis of hypersonic control surface aerothermoelastic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289(in Chinese).
    [27] Lamorte N, Friedmann P P, Dalle D J, et al. Uncertainty propagation in integrated airframe-propulsion system analy-sis for hypersonic vehicles[J]. Journal of Propulsion and Power, 2015, 31(1): 54-68. doi: 10.2514/1.B35122
    [28] Falkiewicz N J. Reduced-order aerothermoelastic analysis of hypersonic vehicle structures[D]. Michigan: University of Michigan of Technology, 2012.
    [29] 陈文俊. 几种气动热弹性设计方法[J]. 战术导弹技术, 2001(5): 31-39.

    Chen W J. The designing methods for aerothemoelasticity[J]. Tactical Missile Technology, 2001(5): 31-39(in Chinese).
    [30] 叶坤, 叶正寅, 屈展. 高超声速热气动弹性中结构热边界影响研究[J]. 西北工业大学学报, 2016, 34(1): 1-10.

    Ye K, Ye Z Y, Qu Z. Effect of structural thermal boun-dary on areothermoelasticity for hypersonic vehicles[J]. Journal of Northwestern Polytechnical University, 2016, 34(1): 1-10(in Chinese).
  • 加载中
图(29) / 表(4)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  38
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-05-30
  • 刊出日期:  2023-11-20

目录

    /

    返回文章
    返回