主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器前体-进气道热变形效应对进气性能影响的流/热/固耦合数值模拟

李思逸 刘磊 杨肖峰 王梓伊 杜雁霞 桂业伟

李思逸, 刘磊, 杨肖峰, 王梓伊, 杜雁霞, 桂业伟. 飞行器前体-进气道热变形效应对进气性能影响的流/热/固耦合数值模拟[J]. 气体物理, 2023, 8(4): 18-26. doi: 10.19527/j.cnki.2096-1642.1031
引用本文: 李思逸, 刘磊, 杨肖峰, 王梓伊, 杜雁霞, 桂业伟. 飞行器前体-进气道热变形效应对进气性能影响的流/热/固耦合数值模拟[J]. 气体物理, 2023, 8(4): 18-26. doi: 10.19527/j.cnki.2096-1642.1031
LI Si-yi, LIU Lei, YANG Xiao-feng, WANG Zi-yi, DU Yan-xia, GUI Ye-wei. Fluid/Thermal/Structural Coupling Simulation on Effects of Forebody-Inlet Thermal Deformation on Intake Performance[J]. PHYSICS OF GASES, 2023, 8(4): 18-26. doi: 10.19527/j.cnki.2096-1642.1031
Citation: LI Si-yi, LIU Lei, YANG Xiao-feng, WANG Zi-yi, DU Yan-xia, GUI Ye-wei. Fluid/Thermal/Structural Coupling Simulation on Effects of Forebody-Inlet Thermal Deformation on Intake Performance[J]. PHYSICS OF GASES, 2023, 8(4): 18-26. doi: 10.19527/j.cnki.2096-1642.1031

飞行器前体-进气道热变形效应对进气性能影响的流/热/固耦合数值模拟

doi: 10.19527/j.cnki.2096-1642.1031
基金项目: 

国家自然科学基金 11972359

详细信息
    作者简介:

    李思逸(1994-)男, 硕士, 主要研究方向为飞行器流-热-固耦合。E-mail: lisiyi5015@mail.ustc.edu.cn

    通讯作者:

    刘磊(1982-)男, 博士, 副研究员, 主要研究方向为飞行器流-热-固耦合。E-mail: l.liu@cardc.cn

  • 中图分类号: V211.3

Fluid/Thermal/Structural Coupling Simulation on Effects of Forebody-Inlet Thermal Deformation on Intake Performance

  • 摘要: 进气性能是吸气式高超声速飞行器进气道设计的重要指标。在长时间气动热载荷作用下,飞行器前体和进气道均会产生不同程度的热变形现象,改变进气道内部气流组织和流场结构,影响进气性能甚至危及飞行安全。基于自主研发的热环境/热响应耦合计算分析平台,开展了飞行器典型前体-进气道结构的流/热/固耦合数值模拟,分析了前体压缩面和唇口构型的热变形效应对进气道波系结构和进气性能的影响规律。分析表明:长时间巡航状态下,考虑热变形影响时,进气道唇口会偏离设计状态,波系随局部变形而发生位移和振荡,导致进气道入口流量系数上升,总压恢复系数下降,升压比上升。热变形导致进气性能相关影响需在吸气式飞行器设计中予以重点关注。

     

  • 图  1  流/热/固耦合数据传递

    Figure  1.  Fluid/thermal/structural coupling data transmission

    图  2  圆管绕流流场网格和结构网格

    Figure  2.  Fluid and structure grids of tube

    图  3  壁面压力分布对比

    Figure  3.  Comparison of the surface pressure

    图  4  壁面热流分布对比

    Figure  4.  Comparison of the surface heat flux

    图  5  2 s时圆管结构温度云图对比

    Figure  5.  Comparison of the temperature contour at 2 s

    图  6  2 s时圆管结构周向应力分布云图

    Figure  6.  Circumferential stress contour at 2 s

    图  7  GK-01模型尺寸图(单位:mm)

    Figure  7.  GK-01 model size (unit: mm)

    图  8  前体-进气道模型网格

    Figure  8.  Grid of forebody-inlet model

    图  9  初始时刻高超声速流场压力云图

    Figure  9.  Pressure contour in hypersonic flow field at the initial time

    图  10  壁面温度分布

    Figure  10.  Wall temperature distribution

    图  11  监控点温度变化

    Figure  11.  Temperature histories at monitoring points

    图  12  50 s时进气道内部壁面热流分布

    Figure  12.  Heat flux distribution of intake wall at 50 s

    图  13  50 s时Von Mises等效应力云图

    Figure  13.  Von Mises stress contour at 50 s

    图  14  结构外廓变形前后对比

    Figure  14.  Outer contour of structure before and after deformation

    图  15  不同时刻流场和结构温度云图

    Figure  15.  Fluid and structure temperature contour at different times

    表  1  自由来流条件

    Table  1.   Freestream condition

    Ma T/K ρ/(kg/m3) p/Pa Tw0/K
    6.47 241.5 9.07×10-3 648.13 294.4
    下载: 导出CSV

    表  2  前体-进气道模型来流条件

    Table  2.   Freestream condition of forebody-inlet model

    Ma T/K ρ/(kg/m3) p/Pa Tw0/K
    7.0 220.1 5.08×10-2 3210.2 300
    下载: 导出CSV

    表  3  变形对进气道性能参数的影响

    Table  3.   Influence of deformation on intake performance parameters

    deformation φ σ Rp
    original shape 0.395 0.326 51.027
    deformed shape 0.578 0.261 88.107
    variable quantity 46.3% -19.9% 72.67%
    下载: 导出CSV
  • [1] Weeks D J, Walker S H, Sackheim R L. Small satellites and the DARPA/air force FALCON program[J]. Acta Astronautica, 2005, 57(2/8): 469-477.
    [2] Paredes P, Theofilis T. Centerline instabilities on the hypersonic international flight research experimentation HIFiRE-5 elliptic cone model[J]. Journal of Fluids and Structures, 2015, 53: 36-49. doi: 10.1016/j.jfluidstructs.2014.11.002
    [3] 汤佳骏, 刘燕斌, 曹瑞, 等. 吸气式高超声速飞行器爬升段关键任务点的鲁棒优化[J]. 宇航学报, 2020, 41(5): 507-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202005002.htm

    Tang J J, Liu Y B, Cao R, et al. Robust optimization of key mission points in climbing phase for air-breathing hypersonic vehicle[J]. Journal of Astronautics, 2020, 41(5): 507-520(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB202005002.htm
    [4] 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501006.htm

    Wu Z N, Bai C Y, Li J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501006.htm
    [5] 杨顺凯, 张堃元, 王磊. 高超可调进气道弹性压缩面自适应无源控制概念研究[J]. 推进技术, 2015, 36(11): 1633-1639. doi: 10.13675/j.cnki.tjjs.2015.11.005

    Yang S K, Zhang K Y, Wang L. Research on self-adaptive and passivity-based control concept of hypersonic adjustable inlet with elastic compression surface[J]. Journal of Propulsion Technology, 2015, 36(11): 1633-1639(in Chinese). doi: 10.13675/j.cnki.tjjs.2015.11.005
    [6] 华如豪, 叶正寅. 吸气式高超声速飞行器多学科动力学建模[J]. 航空学报, 2015, 36(1): 346-356. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501026.htm

    Hua R H, Ye Z Y. Multidisciplinary dynamics modeling and analysis of a generic hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 346-356(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501026.htm
    [7] Reinartz B U, Herrmann C D, Ballmann J, et al. Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment[J]. Journal of Propulsion and Power, 2003, 19(5): 868-875. doi: 10.2514/2.6177
    [8] Hua R H, Ye Z Y, Wu J. Effect of elastic deformation on flight dynamics of projectiles with large slenderness ratio[J]. Aerospace Science and Technology, 2017, 71: 347-359. doi: 10.1016/j.ast.2017.09.029
    [9] Culler A J, McNamara J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393-2406. doi: 10.2514/1.J050617
    [10] Lighthill M J. Oscillating airfoils at high Mach number[J]. Journal of the Aeronautical Sciences, 1953, 20(6): 402-406. doi: 10.2514/8.2657
    [11] Liu D D, Yao Z C, Sarhaddi D, et al. From piston theory to a unified hypersonic-supersonic lifting surface method[J]. Journal of Aircraft, 1997, 34(3): 304-312. doi: 10.2514/2.2199
    [12] Friedmann P P, McNamara J J, Thuruthimattam B J, et al. Aeroelastic analysis of hypersonic vehicles[J]. Journal of Fluids and Structures, 2004, 19(5): 681-712. doi: 10.1016/j.jfluidstructs.2004.04.003
    [13] Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution[J]. International Journal for Numerical Methods in Fluids, 1995, 21(10): 807-835. doi: 10.1002/fld.1650211004
    [14] McNamara J J, Friedmann P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122. doi: 10.2514/1.J050882
    [15] 陈浩. 气动热弹性建模及分析方法研究[D]. 西安: 西北工业大学, 2019: 1-143.

    Chen H. Study of aerothermoelastic modeling and analysis[D]. Xi'an: Northwestern Polytechnical University, 2019: 1-143(in Chinese).
    [16] 靖建朋, 郭荣伟. 气动变形对独立模块薄壳进气道性能影响研究[J]. 宇航学报, 2011, 32(1): 210-218. doi: 10.3873/j.issn.1000-1328.2011.01.033

    Jing J P, Guo R W. Study on influence of pneumatic deformation on the performance of a single module inlet with thin shell[J]. Journal of Astronautics, 2011, 32(1): 210-218(in Chinese). doi: 10.3873/j.issn.1000-1328.2011.01.033
    [17] Qin Q H. Research on typical multidisciplinary coupling problems in super/hypersonic flow field[J]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1-205(in Chinese).
    [18] Lamorte N, Friedmann P P, Dalle D J, et al. Uncertainty propagation in integrated airframe-propulsion system analy-sis for hypersonic vehicles[J]. Journal of Propulsion and Power, 2005, 31(1): 54-68.
    [19] 叶坤. 吸气式高速飞行器关键热气动弹性问题研究[D]. 西安: 西北工业大学, 2018: 1-149.

    Ye K. Research on the critical aerothermoelastic problems for air-breathing hypersonic vehicle[D]. Xi'an: Northwestern Polytechnical University, 2018: 1-149(in Chinese).
    [20] 代光月, 贾洪印, 曾磊, 等. 多场耦合效应对高超声速进气道入口参数影响[J]. 推进技术, 2018, 39(6): 1267-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201806009.htm

    Dai G Y, Jia H Y, Zeng L, et al. Effects of fluid-thermal-structural coupling on inlet parameters of hypersonic intake[J]. Journal of Propulsion Technology, 2018, 39(6): 1267-1274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201806009.htm
    [21] 李宗阳, 吕军, 杨恺, 等. 高超声速飞行器前体/进气道结构热变形数值分析[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集(B). 北京: 中国力学学会, 2017.

    Li Z Y, Lyu J, Yang K, et al. Numerical simulations of structural thermal deformation of hypersonic vehicles forebody/inlet[C]//Proceedings of the Chinese Congress of Theoretical and Applied Mechanics. Beijing: China Mechanical Society, 2017(in Chinese).
    [22] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 20844. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201707008.htm

    Gui Y W, Liu L, Dai G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 20844(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201707008.htm
    [23] 张奇志, 梁力, 林韵梅. 带宽优化的进化算法[J]. 东北大学学报(自然科学版), 1996, 17(3): 305-309. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX603.019.htm

    Zhang Q L, Liang L, Lin Y M. Bandwidth optimization by evolutionary algorithm[J]. Journal of Northeastern University (Natural Science), 1996, 17(3): 305-309(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX603.019.htm
    [24] Yang X F, Gui Y W, Tang W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147: 445-453.
    [25] Chen Y K, Henline W D, Tauber M E. Mars pathfinder trajectory based heating and ablation calculations[J]. Journal of Spacecraft and Rockets, 1995, 32(2): 225-230.
    [26] 黄唐, 毛国良, 姜贵庆, 等. 二维流场、热、结构一体化数值模拟[J]. 空气动力学学报, 2000, 18(1): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200001019.htm

    Huang T, Mao G L, Jiang G Q, et al. Two dimensional coupled flow-thermal structural numerical simulation[J]. Acta Aerodynamica Sinica, 2000, 18(1): 115-119(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200001019.htm
    [27] 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12): 2461-2465. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201412030.htm

    Yang X F, Tang W, Gui Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2461-2465(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201412030.htm
    [28] Bathe K J, Zhang H, Ji S H. Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers & Structures, 1999, 72(1/3): 1-16.
    [29] 刘磊. 高超声速飞行器热气动弹性特性及相似准则研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014: 1-169.

    Liu L. Study on the characteristics and similarity criteria of aerothermoelasticity for hypersonic vehicle[D]. Mianyang: China Aerodynamics Research and Development Center, 2014: 1-169(in Chinese).
    [30] Wieting A R. Experimental study of shock wave interference heating on a cylindrical leading edge[R]. NASA TM-100484, 1987.
    [31] Dechaumphai P, Thornton E A, Wieting A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
    [32] Hohn O, Gülhan A. Experimental investigation on the influence of yaw angle on the inlet performance at Mach 7[R]. AIAA 2010-938, 2010.
    [33] 《中国航空材料手册》编委会. 中国航空材料手册[M]. 2版. 北京: 中国标准出版社, 2002.

    China Aeronautical Materials Handbook Editorial Committee. China aeronautical materials handbook[M]. 2nd ed. Beijing: Standards Press of China, 2002(in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-12
  • 修回日期:  2023-01-04
  • 刊出日期:  2023-07-20

目录

    /

    返回文章
    返回