主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速再入体表面热解烧蚀效应数值模拟

高铁锁 丁明松 傅杨奥骁 江涛 董维中 刘庆宗

高铁锁, 丁明松, 傅杨奥骁, 江涛, 董维中, 刘庆宗. 高超声速再入体表面热解烧蚀效应数值模拟[J]. 气体物理, 2023, 8(1): 58-67. doi: 10.19527/j.cnki.2096-1642.0986
引用本文: 高铁锁, 丁明松, 傅杨奥骁, 江涛, 董维中, 刘庆宗. 高超声速再入体表面热解烧蚀效应数值模拟[J]. 气体物理, 2023, 8(1): 58-67. doi: 10.19527/j.cnki.2096-1642.0986
GAO Tie-suo, DING Ming-song, FU Yang-ao-xiao, JIANG Tao, DONG Wei-zhong, LIU Qing-zong. Numerical Simulation on Pyrolysis and Ablation Effects for Surface Material of Hypersonic Reentry Body[J]. PHYSICS OF GASES, 2023, 8(1): 58-67. doi: 10.19527/j.cnki.2096-1642.0986
Citation: GAO Tie-suo, DING Ming-song, FU Yang-ao-xiao, JIANG Tao, DONG Wei-zhong, LIU Qing-zong. Numerical Simulation on Pyrolysis and Ablation Effects for Surface Material of Hypersonic Reentry Body[J]. PHYSICS OF GASES, 2023, 8(1): 58-67. doi: 10.19527/j.cnki.2096-1642.0986

高超声速再入体表面热解烧蚀效应数值模拟

doi: 10.19527/j.cnki.2096-1642.0986
基金项目: 

国家重点研发计划项目 2019YFA0405203

详细信息
    作者简介:

    高铁锁(1965-)男, 研究员, 主要研究方向为气动物理学及高温气体动力学。E-mail: gaots19654@163.com

  • 中图分类号: V411.4

Numerical Simulation on Pyrolysis and Ablation Effects for Surface Material of Hypersonic Reentry Body

  • 摘要: 表面防热材料热解与烧蚀效应研究在高超声速飞行器总体设计中具有重要应用价值。以热解烧蚀效应对飞行器目标特性及通信性能影响的预测评估为背景, 从化学非平衡气体动力学方程及固体热传导方程出发, 建立了气-固交界面上热解烧蚀壁面边界条件的一般形式及热物理化学模型, 发展了高超声速再入体绕流流场与表面材料内部温度场耦合求解的数值模拟方法, 并对计算模型和数值方法的可靠性进行了验证分析。在此基础上针对复杂外形再入体及表面硅基防热材料, 开展了典型再入条件下再入体绕流及尾流流场的数值模拟, 重点分析了表面材料热解烧蚀效应对流场等离子体分布的影响。研究表明: 在表面材料中不含碱金属杂质的情况下, 热解与烧蚀效应对流场中等离子体分布影响较小, 而在含有微量碱金属杂质的情况下, 热解与烧蚀效应对流场中等离子体分布及化学组分分布具有很大影响, 由此对再入目标特性与电磁通信性能带来的影响不容忽视。

     

  • 图  1  气-固交界面质量与能量平衡

    Figure  1.  Mass and energy balance at gas-solid interfaces

    图  2  沿驻点线上的组分质量分数分布对比

    Figure  2.  Comparison of species mass fraction along the stagnation line

    图  3  表面热流与温度分布比较

    Figure  3.  Surface heat flux and temperature distribution

    图  4  圆管表面压力和热流分布与实验结果对比

    Figure  4.  Comparison of pressure and heat flux on the surface of round tube with experimental data

    图  5  圆管表面压力和热流分布结果对比

    Figure  5.  Comparison of pressure and heat flux on the surface of round tube

    图  6  全目标区域热解烧蚀流场温度分布

    Figure  6.  Temperature distribution of flow field with pyrolysis and ablation species

    图  7  全目标区域热解烧蚀流场温度及电子数密度分布

    Figure  7.  Temperature and electron number density distribution of flow field with pyrolysis and ablation species

    图  8  全目标区域热解烧蚀流场温度分布

    Figure  8.  Temeratue distribution with pyrolysis and ablation species

    图  9  全碱金属杂质对流场温度分布的影响

    Figure  9.  Influence of alkali metal impurity on flow field temperature distribution

    图  10  碱金属对不同剖面电子数密度分布的影响(H=42 km)

    Figure  10.  Influence of alkali metal on electron number density in different flow profiles (H=42 km)

    图  11  碱金属对不同剖面电离组分分布的影响(H=42 km)

    Figure  11.  Influence of alkali metal on ion species in different flow profiles (H=42 km)

    表  1  化学反应模型

    Table  1.   Chemical reaction model

    No. reaction No. reaction
    1 O2+M1↔O+O+M1 19 H2+M6↔H+H+M6
    2 O2+O↔O+O+O 20 H2O+M7↔H+OH+M7
    3 O2+O2↔O+O+O2 21 OH+M8↔H+O+M8
    4 O2+N2↔O+O+N2 22 OH+CO↔CO2+H
    5 N2+M2↔N+N+M2 23 OH+H2↔H2O+H
    6 N2+N↔N+N+N 24 H+O2↔OH+O
    7 N2+N2↔N+N+N2 25 O+H2↔OH+H
    8 NO+M3↔N+O+M3 26 OH+OH↔H2O+O
    9 NO+M4↔N+O+M4 27 C2H2 + H↔C2H + H2
    10 O+NO↔N+O2 28 C2H2+OH↔C2H+H2O
    11 O+N2↔N+NO 29 C2H2+O↔CH2+CO
    12 O+N↔NO++e 30 C2H+O↔CH+CO
    13 O2+N2↔NO+NO++e 31 CH+OH↔CO+H2
    14 NO+N2↔N2+NO++e 32 CH+O↔CO+H
    15 NO+O2↔O2+NO++e 33 Na+M9↔Na++e+M9
    16 CO2+M5↔CO+O+M5 34 Na+CO2↔Na++e+CO2
    17 CO2+O↔CO+O2 35 Na+e↔Na++e+e
    18 CO+NO↔CO2+N 36 Na++NO↔NO++Na
    下载: 导出CSV
  • [1] 莫凡, 王锁柱, 高振勋. 辐射平衡壁温下有限催化模型数值模拟[J]. 气体物理, 2021, 6(5): 1-11. doi: 10.19527/j.cnki.2096-1642.0896

    Mo F, Wang S Z, Gao Z X. Numerical simulation of finite catalysis model at the balanced radiation wall[J]. Physics of Gases, 2021, 6(5): 1-11 (in Chinese). doi: 10.19527/j.cnki.2096-1642.0896
    [2] 丁明松, 江涛, 董维中, 等. 三维等离子体MHD气动热环境数值模拟[J]. 航空学报, 2017, 38(8): 121030. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201708004.htm

    Ding M S, Jiang T, Dong W Z, et al. Numerical simu-lation of 3D plasma MHD aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121030 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201708004.htm
    [3] 杨伟斌, 朱庆勇. 分形理论在碳化材料三维烧蚀热防护计算中的应用[J]. 气体物理, 2021, 6(4): 19-28. doi: 10.19527/j.cnki.2096-1642.0866

    Yang W B, Zhu Q Y. Application of fractal theory on three-dimensional ablative thermal response of charring composite[J]. Physics of Gases, 2021, 6(4): 19-28 (in Chinese). doi: 10.19527/j.cnki.2096-1642.0866
    [4] 周述光, 曾磊, 国义军, 等. 碳/碳化硅复合材料静止环境下氧化行为模拟[J]. 气体物理, 2021, 6(4): 29-36. doi: 10.19527/j.cnki.2096-1642.0909

    Zhou S G, Zeng L, Guo Y J, et al. Simulation of C/SiC composite oxidation behavior in static environment[J]. Physics of Gases, 2021, 6(4): 29-36 (in Chinese). doi: 10.19527/j.cnki.2096-1642.0909
    [5] Park C, Jaffe R, Partridge H. Chemical-kinetic parameters of hyperbolic earth entry[R]. AIAA 2000-0210, 2000.
    [6] Candler G V. Nonequilibrium processes in hypervelocity flows: an analysis of carbon ablation models[R]. AIAA 2012-0724, 2012.
    [7] Olynick D, Chen Y K, Tauber M, et al. Wake flow calculations with ablation for the stardust sample return capsule[R]. AIAA 1997-2477, 1997.
    [8] 张志成. 气动物理学[M]. 北京: 国防工业出版社, 2013.

    Zhang Z C. Aero-physics[M]. Beijing: National De-fense Industry Press, 2013 (in Chinese).
    [9] Stowell G M, Trolier J W, Krawczyk W J. Target signatures of strategic reentry vehicles[R]. AIAA 93-2655, 1993.
    [10] 张志成, 高铁锁, 董维中, 等. 再入飞行器目标特性建模研究[J]. 实验流体力学, 2007, 21(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200701001.htm

    Zhang Z C, Gao T S, Dong W Z, et al. Study on modeling of re-entry vehicle signatures[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 7-12 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC200701001.htm
    [11] 李海燕, 唐志共, 杨彦广, 等. 高超声速飞行器高温流场数值模拟面临的问题[J]. 航空学报, 2015, 36(1): 176-191. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501013.htm

    Li H Y, Tang Z G, Yang Y G, et al. Problems of nu-merical simulation of high-temperature gas flow fields for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 176-191 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501013.htm
    [12] 曾学军, 李海燕. 碱金属杂质对飞行器烧蚀流场电子数密度影响[J]. 宇航学报, 2017, 38(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702001.htm

    Zeng X J, Li H Y. Effects of alkali impurity on the electron density for the vehicles with ablation[J]. Journal of Astronautics, 2017, 38(2): 109-114 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702001.htm
    [13] Bhutta B A, Lewis C H. Low-to-high altitude predictions of three-dimensional ablative reentry flowfields[J]. Journal of Spacecraft and Rockets, 1993, 30(4): 395-403.
    [14] Morris R A, Bench P M, Golden K E, et al. Characte-rization and prediction of hypersonic plasma effects[R]. AIAA 99-0630, 1999.
    [15] 乐嘉陵, 高铁锁, 曾学军. 再入物理[M]. 北京: 国防工业出版社, 2005.

    Le J L, Gao T S, Zeng X J. Reentry physics[M]. Beijing: National Defense Industry Press, 2005 (in Chinese).
    [16] Hartunian R A, Stewart G E, Curtiss T J, et al. Impli-cations and mitigation of radio frequency blackout during reentry of reusable launch vehicles[R]. AIAA 2007-6633, 2007.
    [17] 高铁锁, 董维中, 江涛, 等. 再入等离子体流动及其电磁波传输效应研究[J]. 宇航学报, 2017, 38(8): 879-885. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201708013.htm

    Gao T S, Dong W Z, Jiang T, et al. Research on reentry plasma flow and its effects on electromagnetic wave transmission[J]. Journal of Astronautics, 2017, 38(8): 879-885 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201708013.htm
    [18] 余协正, 陈宁, 陈萍萍, 等. 临近空间高超声速飞行器目标特性及突防威胁分析[J]. 航天电子对抗, 2019, 35(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ201906011.htm

    Yu X Z, Chen N, Chen P P, et al. Target characteristics and penetration threats analysis of hypersonic vehicle in the near-space[J]. Aerospace Electronic Warfare, 2019, 35(6): 24-29 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ201906011.htm
    [19] 刘超峰, 王谷, 张珍铭, 等. 临近空间高超声速目标防御技术需求分析[J]. 现代防御技术, 2015, 43(5): 18-25, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201505005.htm

    Liu C F, Wang G, Zhang Z M, et al. Technical requirements analysis of air defense system intercepting fast attack weapons in near space[J]. Modern Defence Technology, 2015, 43(5): 18-25, 51 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201505005.htm
    [20] 周印佳, 孟松鹤, 解维华, 等. 高温氧化对超高温陶瓷材料耦合传热的影响[J]. 复合材料学报, 2016, 33(5): 1079-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201605017.htm

    Zhou Y J, Meng S H, Xie W H, et al. Effects of oxida-tion on coupled heat transfer of ultra-high temperature ceramic materials at high temperature[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1079-1086 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201605017.htm
    [21] 周印佳, 孟松鹤, 解维华, 等. 高超声速飞行器热环境与结构传热的多场耦合数值研究[J]. 航空学报, 2016, 37(9): 2739-2748. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609012.htm

    Zhou Y J, Meng S H, Xie W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2739-2748 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609012.htm
    [22] Bhutta B A, Lewis C H. A new technique for low-to-high altitude predictions of ablative hypersonic flowfields[R]. AIAA 1991-1392, 1991.
    [23] Meng S H, Zhou Y J, Xie W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites[J]. Spacecraft and Rockets, 2016, 53(5): 930-935.
    [24] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1): 311-324. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501024.htm

    Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aero-nautica et Astronautica Sinica, 2015, 36(1): 311-324 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501024.htm
    [25] Miller B A, Crowell A R, McNamara J J. Loosely coupled time-marching of fluid-thermal-structural interations[R]. AIAA 2013-1666, 2013.
    [26] Zhang S T, Chen F, Liu H. Integrated fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles[R]. AIAA 2014-1934, 2014.
    [27] 张威, 曾明, 肖凌飞, 等. 碳-酚醛材料烧蚀热解对再入流场特性影响的数值计算[J]. 国防科技大学学报, 2014, 36(4): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201404008.htm

    Zhang W, Zeng M, Xiao L F, et al. Numerical study for the effects of ablation and pyrolysis on the hypersonic reentry flow[J]. Journal of National University of Defense Technology, 2014, 36(4): 41-48 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201404008.htm
    [28] Johnston C O, Gnoffo P A, Mazaheri A. Study of abla-tion-flowfield coupling relevant to the orion heatshield[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2): 213-221.
    [29] Dias B, Turchi A, Magin T. Stagnation-line simulations of meteor ablation[R]. AIAA 2015-2349, 2015.
    [30] Keenan J A, Candler G V. Simulation of graphite sublimation and oxidation under re-entry conditions[R]. AIAA 94-2083, 1994.
    [31] Keenan J A, Candler G V. Simulation of ablation in Earth atmospheric entry[R]. AIAA 93-2789, 1993.
    [32] 董维中, 高铁锁, 丁明松, 等. 硅基材料烧蚀产物对再入体流场特性影响的数值计算[J]. 空气动力学学报, 2010, 28(6): 708-714.

    Dong W Z, Gao T S, Ding M S, et al. Numerical analysis for the effect of silicon based material ablation on the flowfield around re-entry blunt body[J]. Acta Aerodynamica Sinica, 2010, 28(6): 708-714 (in Chinese).
    [33] 高铁锁, 李椿萱, 董维中, 等. 高超声速电离绕流的数值模拟[J]. 空气动力学学报, 2002, 20(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200202008.htm

    Gao T S, Li C X, Dong W Z, et al. Numerical simula-tion of hypersonic ionized flows[J]. Acta Aerodynamica Sinica, 2002, 20(2): 184-191 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200202008.htm
    [34] Dechaumphai P, Wieting A R, Pandey A K. Fluid-thermal-structural interaction of aerodynamically heated leading edges[J]. Journal of Spracecraft, 1989, 26(4): 621-631.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  40
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-05-11

目录

    /

    返回文章
    返回