主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向高超声速飞行器的激波智能预测方法

朱元浩 王岳青 杨志供 孙国鹏 宗文刚 曾磊 陈坚强

朱元浩, 王岳青, 杨志供, 孙国鹏, 宗文刚, 曾磊, 陈坚强. 面向高超声速飞行器的激波智能预测方法[J]. 气体物理, 2023, 8(1): 48-57. doi: 10.19527/j.cnki.2096-1642.0985
引用本文: 朱元浩, 王岳青, 杨志供, 孙国鹏, 宗文刚, 曾磊, 陈坚强. 面向高超声速飞行器的激波智能预测方法[J]. 气体物理, 2023, 8(1): 48-57. doi: 10.19527/j.cnki.2096-1642.0985
ZHU Yuan-hao, WANG Yue-qing, YANG Zhi-gong, SUN Guo-peng, ZONG Wen-gang, ZENG Lei, CHEN Jian-qiang. Shock Wave Intelligent Prediction Method for Hypersonic Vehicle[J]. PHYSICS OF GASES, 2023, 8(1): 48-57. doi: 10.19527/j.cnki.2096-1642.0985
Citation: ZHU Yuan-hao, WANG Yue-qing, YANG Zhi-gong, SUN Guo-peng, ZONG Wen-gang, ZENG Lei, CHEN Jian-qiang. Shock Wave Intelligent Prediction Method for Hypersonic Vehicle[J]. PHYSICS OF GASES, 2023, 8(1): 48-57. doi: 10.19527/j.cnki.2096-1642.0985

面向高超声速飞行器的激波智能预测方法

doi: 10.19527/j.cnki.2096-1642.0985
基金项目: 

国家自然科学基金 61806205

详细信息
    作者简介:

    朱元浩(1996-)男, 硕士, 主要研究方向为人工智能在CFD领域的应用技术。E-mail: zyh15283860737@163.com

    通讯作者:

    曾磊(1981-)男, 副研究员, 主要研究方向为计算流体力学。E-mail: zenglei0ok@126.com

  • 中图分类号: V19

Shock Wave Intelligent Prediction Method for Hypersonic Vehicle

  • 摘要: 高超声速飞行器激波位置的准确预测能够有效提升数值模拟的精度和效率。一方面, 对高超声速飞行器激波附近网格进行正交和加密处理, 可有效提升数值计算精度; 另一方面, 使用高超声速飞行器激波位置对计算网格进行修正, 能够加速CFD计算收敛过程。提出了一种基于机器学习的高超声速飞行器激波智能预测方法, 对典型高超声速飞行器外形进行激波位置的高效准确预测。首先, 针对典型高超声速飞行器外形和典型飞行状态, 使用数值模拟方法获得收敛的流场, 并采用基于Mach数等值线的激波提取方法, 从流场中判别激波面并提取构成激波面的关键点位置, 形成训练数据; 然后采用有监督学习算法, 学习关键点位置, 并利用二次曲线沿流向拟合关键点形成初步的激波线族; 最后, 基于剖面压力云图, 构造基于投影压力图像的智能预测神经网络, 对初步形成的激波线族进行修正, 并获得三维激波面。大量的实验结果表明, 激波预测模型能够对高超声速飞行器激波位置做出准确预测, 预测的激波面与CFD数值计算结果中提取的激波面误差在10-4量级。

     

  • 图  1  CFD计算结果中提取的激波线与拟合的二次曲线线对比

    Figure  1.  Comparison between the shock line extracted from the CFD results and the fitted shock line

    图  2  激波关键点智能预测法

    Figure  2.  Intelligent prediction method of shock wave key points

    图  3  外形投影和对应的压力场投影

    Figure  3.  Shape projection and corresponding pressure field projection

    图  4  激波网络的结构

    Figure  4.  Structure of shock-net

    图  5  外形网络的结构

    Figure  5.  Structure of shape-net

    图  6  来流条件网络的结构

    Figure  6.  Structure of inlet-net

    图  7  连接网络的结构

    Figure  7.  Structure of concatenated-net

    图  8  像素坐标转实际坐标的原理

    Figure  8.  Principle of converting pixel coordinates to actual coordinates

    图  9  从图像中提取的激波线

    Figure  9.  Shock lines extracted from the image

    图  10  预测的关键点位置与提取的关键点位置的对比

    Figure  10.  Comparison between the predicted key point locations and the extracted key point locations

    图  11  预测的关键点位置与提取的关键点位置的对比

    Figure  11.  Comparison between the predicted key point locations and the extracted key point locations

    图  12  钝锥外形的预测激波面(左)与提取的激波面(右)

    Figure  12.  Predicted shock wave with blunt cone shape(left), and the compared extracted shock wave (right)

    图  13  升力体外形和钝双锥外形的预测激波面(左)与提取的激波面(右)

    Figure  13.  Predicted shock wave with lifting body shape and double cone shape (left), and the compared extracted shock wave (right)

    图  14  不同外形和不同来流条件下CFD计算得到的压力场(上)和预测的压力场(下)

    Figure  14.  Pressure fields calculated by CFD of different shapes and different inflow conditions (top), and the corresponding predicted pressure fields (bottom)

    图  15  双锥外形和升立体锥外形的预测激波面(左)与提取的激波面(右)

    Figure  15.  Predicted shock wave with double cone shape and lifting body shape (left), and the compared extracted shock wave (right)

    图  16  钝锥外形的预测激波面(左)与提取的激波面(右)

    Figure  16.  Predicted shock wave with blunt cone shape(left), and the compared extracted shock wave (right)

    图  17  双椭球外形的预测激波面(左)与提取的激波面(右)

    Figure  17.  Predicted shock wave with double ellipsoid shape(left), and the compared extracted shock wave (right)

    表  1  基于Mach数等值线的激波面提取算法

    Table  1.   Shock wave extraction algorithm based on Mach number contour

    input: uvwρgxkykMainput
    output: xshockyshockzshock
    1 for any grid point P(i, j, k)do
    2 $v_{\mathrm{F}}=\sqrt{u^2+v^2+w^2}$
    3 $v_{\text {sound }}=\sqrt{\gamma \times p / \rho}$
    4 ${Ma}(i, j, k)=\frac{v_{\mathrm{F}}}{v_{\text {sound }}}$
    5 Mashock=Mainput×0.99
    6 for any grid point P(i, j, k)do
    7 if Ma(i, j, k)≤Mashockand Ma(i, j, k+1)>Mashock then
    8 put P(i, j, k) into set S
    9 for Pi, j, kS do
    10 di, j, k=di, j, k-1+d(Pi, j, k, Pi, j, k-1)
    11 dshock=di, j, k+$\frac{d_{i, j, k+1}-d_{i, j, k}}{{Ma}(i, j, k+1)-M a(i, j, k)}$×
    (Mashock-Ma(i, j, k))
    12 xshock=x(i, j, 1)+$\frac{d_{\text {shock }}}{d_{i, j, k}}$×(x(i, j, k)-x(i, j, 1))
    13 yshock=y(i, j, 1)+$\frac{d_{\text {shook }}}{d_{i, j, k}}$×(y(i, j, k)-y(i, j, 1))
    14 zshock=z(i, j, 1)+$\frac{d_{\text {shook }}}{d_{i, j, k}}$×(z(i, j, k)-z(i, j, 1))
    下载: 导出CSV

    表  2  不同外形的MSEave与MAEave

    Table  2.   MSEave and MAEave of different shapes

    shape MSEave MAEave
    blunt cone 1.482 6×10-4 7.652 7×10-3
    double cone 2.184 2×10-4 1.088 1×10-2
    lifting body 2.382 8×10-4 1.145 3×10-2
    下载: 导出CSV

    表  3  浮点运算次数计算结果

    Table  3.   Calculation results of the number of floating point operations

    model FLOPs
    shape-net 4.0×109
    inlet-net 1.54×105
    concatenated-net 1.89×109
    shock-net 5.89×109
    下载: 导出CSV

    表  4  预测的压力场与CFD计算得到的压力场误差

    Table  4.   Error between the predicted pressure field and the pressure field calculated by CFD

    shape MSEave MAEave
    blunt cone 1.655 7×10-10 7.394 2×10-9
    double cone 1.724 1×10-10 8.566 4×10-9
    double ellipsoid 2.732 8×10-10 1.299 1×10-8
    lifting body 1.868 2×10-10 8.711 9×10-9
    下载: 导出CSV

    表  5  不同外形的MSEave

    Table  5.   MSEave of different shapes

    shape MSEave MAEave
    blunt cone 1.185 7×10-4 5.815 5×10-3
    double cone 1.687 3×10-4 8.622 7×10-3
    lifting body 1.778 5×10-4 8.760 5×10-3
    下载: 导出CSV

    表  6  双椭球外形的MSEave与MAEave

    Table  6.   MSEave and MAEave of double ellipsoid shape

    shape MSEave MAEave
    double ellipsoid 2.519 1×10-4 1.156 9×10-2
    下载: 导出CSV
  • [1] Landau L D, Lifshitz E M. Fluid mechanics[M]. 2nd ed. Amsterdam: Elsevier, 1987.
    [2] Nath G, Dutta M, Chaurasia S. Exact solution for isothermal flow behind a shock wave in a self-gravitating gas of variable density in an azimuthal magnetic field[J]. Journal of Engineering Physics and Thermophysics, 2020, 93(5): 1247-1254. doi: 10.1007/s10891-020-02228-y
    [3] Wu Z N, Xu Y Z, Wang W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513. doi: 10.1016/j.cja.2013.05.001
    [4] 姜维, 杨云军, 陈河梧. 带减阻杆高超声速飞行器外形气动特性研究[J]. 实验流体力学, 2011, 25(6): 28-32, 53. doi: 10.3969/j.issn.1672-9897.2011.06.006

    Jiang W, Yang Y J, Chen H W. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32, 53 (in Chinese). doi: 10.3969/j.issn.1672-9897.2011.06.006
    [5] Liu Y, Lu Y T, Wang Y Q, et al. A CNN-based shock detection method in flow visualization[J]. Computers & Fluids, 2019, 184: 1-9.
    [6] 彭俊, 胡宗民, 姜宗林. 基于机器学习预测激波相互作用位置的研究[C]. 第十一届全国流体力学学术会议论文集. 深圳: 中国力学学会, 2020: 939.

    Peng J, Hu Z M, Jiang Z L. Research on prediction of shock interaction position based on machine learning[C]. The 11th National Academic Conference on Fluid Mechanics. Shenzhen: Chinese Society of Theoretical and Applied Mechanics, 2020: 939(in Chinese).
    [7] Beck A D, Zeifang J, Schwarz A, et al. A neural network based shock detection and localization approach fordiscontinuous Galerkin methods[J]. Journal of Computational Physics, 2020, 423: 109824. doi: 10.1016/j.jcp.2020.109824
    [8] Monfort M, Luciani T, Komperda J, et al. A deep learning approach to identifying shock locations in turbulent combustion tensor fields[A]. Schultz T, Özarslan E, Hotz I. Modeling, Analysis, and Visualization of Anisotropy[M]. Cham: Springer, 2017: 375-392.
    [9] Kossaczká T, Ehrhardt M, Günther M. Enhanced fifth order WENO shock-capturing schemes with deep learning[J]. Results in Applied Mathematics, 2021, 12: 100201. doi: 10.1016/j.rinam.2021.100201
    [10] Paciorri R, Bonfiglioli A. Accurate detection of shock waves and shock interactions in two-dimensional shock-capturing solutions[J]. Journal of Computational Physics, 2020, 406: 109196. doi: 10.1016/j.jcp.2019.109196
    [11] GrzywińskiS. Research of vibroacoustic disturbances influence on the shock wave detection process[C]. 25th International Conference on Engineering Mechanics 2019. Svratka, 2019: 129-132.
    [12] Zheng L, Lawlor B, Katko B J, et al. Image processing and edge detection techniques to quantify shock wave dynamics experiments[J]. Experimental Techniques, 2021, 45(4): 483-495. doi: 10.1007/s40799-020-00415-3
    [13] Yao Z C, Zhang H, Zhang X J, et al. Analysis on the influence mechanism of conical shock wave on pulsed laser forward detection[J]. Optik, 2019, 183: 783-791. doi: 10.1016/j.ijleo.2019.02.093
    [14] Gettle G L, Homer Jr V H. Acoustic/shock wave attenuating assembly: US, 5225622[P]. 1993-07-06.
    [15] 张涛, 郑晓刚, 汤祎麒, 等. 基于非轴对称吻切技术的三维激波逆向乘波设计[J]. 航空科学技术, 2020, 31(11): 35-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202011006.htm

    Zhang T, Zheng X G, Tang Y Q, et al. Inverse waverider design for 3D shock wave based on non-axisymmetric osculating cones method[J]. Aeronautical Science and Technology, 2020, 31(11): 35-46 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202011006.htm
    [16] 涂国华, 袁湘江, 陆利蓬. 激波捕捉差分方法研究[J]. 应用数学和力学, 2007, 28(4): 433-440. doi: 10.3321/j.issn:1000-0887.2007.04.008

    Tu G H, Yuan X J, Lu L P. Developing shock-capturing difference methods[J]. Applied Mathematics and Mechanics, 2007, 28(4): 433-440 (in Chinese). doi: 10.3321/j.issn:1000-0887.2007.04.008
    [17] 刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配法[J]. 空气动力学学报, 2015, 33(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201501002.htm

    Liu J, Zou D Y, Xu C G. An unsteady shock-fitting technique based on unstructured moving grids[J]. Acta Aerodynamica Sinica, 2015, 33(1): 10-16 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201501002.htm
    [18] 宗文刚, 邓小刚, 张涵信. 双重加权实质无波动激波捕捉格式[J]. 空气动力学学报, 2003, 21(2): 218-225. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200302013.htm

    Zong W G, Deng X G, Zhang H X. Double weighted essentially non-oscillatory shock-capturing schemes[J]. Acta Aerodynamica Sinica, 2003, 21(2): 218-225 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200302013.htm
    [19] 张玉东, 傅德薰, 马延文, 等. 高精度非定常激波装配法[J]. 计算物理, 2007, 24(5): 533-536. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL200705006.htm

    Zhang Y D, Fu D X, Ma Y W, et al. A high-order unsteady shock-fitting scheme[J]. Chinese Journal of Computational Physics, 2007, 24(5): 533-536(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL200705006.htm
    [20] Payedimarri A B, Concina D, Portinale L, et al. Prediction models for public health containment measures on COVID-19 using artificial intelligence and machine learning: a systematic review[J]. International Journal of Environmental Research and Public Health, 2021, 18(9): 4499.
    [21] Ji M, Liu Y M, Zhao M D, et al. Use of machine learning algorithms to predict the understandability of health education materials: development and evaluation study[J]. JMIR Medical Informatics, 2021, 9(5): e28413.
    [22] 徐军, 丁宇新, 王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报, 2007, 21(6): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MESS200706016.htm

    Xu J, Ding Y X, Wang X L. Sentiment classification for Chinese news using machine learning methods[J]. Journal of Chinese Information Processing, 2007, 21(6): 95-100 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MESS200706016.htm
    [23] 薛晓娟, 贾元华, 王晟由, 等. 基于机器学习的铁路建设间接经济效益预测[J]. 武汉理工大学学报, 2021, 43(8): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202108007.htm

    Xue X J, Jia Y H, Wang S Y, et al. Research on indirect economic benefits of railway construction based on machine learning[J]. Journal of Wuhan University of Technology, 2021, 43(8): 43-50 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202108007.htm
    [24] Moon J, Jung S, Park S, et al. Machine learning-based two-stage data selection scheme for long-term influenza forecasting[J]. Computers, Materials & Continua, 2021, 68(3): 2945-2959.
    [25] dos Santos Luciano A C, Picoli M C A, Duft D G, et al. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm[J]. Computers and Electronics in Agriculture, 2021, 184: 106063.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  32
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-06

目录

    /

    返回文章
    返回