主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导弹超声速尾退分离干扰特性试验

伍彬 傅建明 胡珊 蔡天星 鲍然 谢峰 魏忠武

伍彬, 傅建明, 胡珊, 蔡天星, 鲍然, 谢峰, 魏忠武. 导弹超声速尾退分离干扰特性试验[J]. 气体物理, 2022, 7(6): 74-84. doi: 10.19527/j.cnki.2096-1642.0965
引用本文: 伍彬, 傅建明, 胡珊, 蔡天星, 鲍然, 谢峰, 魏忠武. 导弹超声速尾退分离干扰特性试验[J]. 气体物理, 2022, 7(6): 74-84. doi: 10.19527/j.cnki.2096-1642.0965
WU Bin, FU Jian-ming, HU Shan, CAI Tian-xing, BAO Ran, XIE Feng, WEI Zhong-wu. Experiment on Interference Characteristics During Aft Supersonic Ejection of a Missile[J]. PHYSICS OF GASES, 2022, 7(6): 74-84. doi: 10.19527/j.cnki.2096-1642.0965
Citation: WU Bin, FU Jian-ming, HU Shan, CAI Tian-xing, BAO Ran, XIE Feng, WEI Zhong-wu. Experiment on Interference Characteristics During Aft Supersonic Ejection of a Missile[J]. PHYSICS OF GASES, 2022, 7(6): 74-84. doi: 10.19527/j.cnki.2096-1642.0965

导弹超声速尾退分离干扰特性试验

doi: 10.19527/j.cnki.2096-1642.0965
详细信息
    作者简介:

    伍彬(1987-)男, 高工, 主要研究方向为气动设计、仿真与建模。E-mail: wubin_no8@qq.com

  • 中图分类号: V211.7

Experiment on Interference Characteristics During Aft Supersonic Ejection of a Missile

  • 摘要: 超/高超声速尾退分离在防热、保形、隐身、多次投放、回收等方面具有明显优势,有望成为高超声速飞行器载荷投放的优选方案。由此面临一类新的多体分离问题:超/高超声速尾退分离问题(aft super/hypersonic ejection separation,ASES)。超/高超声速尾退分离问题本质上是带空腔底部流动与多体分离构成的耦合问题,具有流场结构复杂、气动非定常非线性非对称效应显著的特点。针对超声速尾退分离问题,采用网格测力和轨迹捕获(captive trajectory system,CTS)风洞试验方法探索了尾退分离干扰流场的结构,发现可根据流场结构和舵效变化分为低速-亚声速无激波、高亚声速-跨声速弱激波、超声速激波和准自由流弱干扰4种典型干扰特征,揭示了尾流场影响后不同区域的全弹气动特性和舵效特性以及控制律、攻角、高度和Mach数对分离位移和姿态的影响规律。相关结论将有助于增强对尾退分离问题的认识,对尾退分离技术的工程实践具有参考价值。

     

  • 图  1  FD-12风洞

    Figure  1.  FD-12 wind tunnel

    图  2  CTS 6自由度并联机构

    Figure  2.  CTS 6 DOF parallel mechanism

    图  3  尾退分离CTS试验方案示意图

    Figure  3.  CTS solution of aft ejection separation

    图  4  CTS试验流程

    Figure  4.  Flowchart of CTS test

    图  5  投送平台和导弹模型示意图

    Figure  5.  Carrier and missile test model

    图  6  坐标系示意图

    Figure  6.  Coordinate definition

    图  7  尾退分离流场结构(纹影)

    Figure  7.  Flow structure of aft ejection separation(schlieren)

    图  8  超声速底部流动示意[34]

    Figure  8.  Sketch of supersonic base flow[34]

    图  9  不同尾退分离距离流场结果(纹影)

    Figure  9.  Flow structure at various aft distances(schlieren)

    图  10  尾退分离流场典型干扰特征

    Figure  10.  Typical interference characteristics of aft ejection separation

    图  11  尾流干扰与自由流气动系数对比

    Figure  11.  Aerodynamic characteristic comparision between interference and freestream

    图  12  尾流干扰与自由流舵效对比

    Figure  12.  Control effectiveness comparision betweeninterference and freestream

    图  13  有无控制律的导弹位移、姿态结果对比

    Figure  13.  Comparision with and without control

    图  14  不同攻角导弹位移、姿态结果对比

    Figure  14.  Comparision between different angles of attack

    图  15  不同高度导弹位移、姿态结果对比

    Figure  15.  Comparision between different altitudes

    图  16  不同Mach数导弹位移、姿态结果对比

    Figure  16.  Comparision between different Mach numbers

  • [1] Johnson M D. Dynamic supersonic base store ejection simulation using Beggar[D]. Ohro: Air University, 2008.
    [2] 靳晨晖, 王刚, 王泽汉. 子母弹多体分离过程的非定常CFD/RBD数值仿真[J]. 气体物理, 2018, 3(4): 47-63. doi: 10.19527/j.cnki.2096-1642.2018.04.006

    Jin C H, Wang G, Wang Z H. Numerical simulation of unsteady CFD/RBD in multibody separation process of cluster munitions[J]. Physics of Gases, 2018, 3(4): 47-63(in Chinese). doi: 10.19527/j.cnki.2096-1642.2018.04.006
    [3] 王金龙, 王浩, 江坤, 等. 超音速子母弹时序抛撒分离干扰特性[J]. 国防科技大学学报, 2016, 38(5): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201605017.htm

    Wang J L, Wang H, Jiang K, et al. Aerodynamic interference investigation of supersonic cluster munition dispensed by sequence[J]. Journal of National University of Defense Technology, 2016, 38(5): 105-111(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201605017.htm
    [4] 陶如意, 王福华, 季晓松, 等. 超音速子母弹分离气动干扰风洞试验[J]. 弹道学报, 2008, 20(4): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200804009.htm

    Tao R Y, Wang F H, Ji X S, et al. Aerodynamic interference wind tunnel experiment for separation of super-sonic cluster munition[J]. Journal of Ballistics, 2008, 20(4): 24-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB200804009.htm
    [5] 陶如意, 王浩, 赵润祥, 等. 超音速子母弹分离激波干扰特性研究[J]. 兵工学报, 2011, 32(10): 1206-1211.

    Tao R Y, Wang H, Zhao R X, et al. Research on shock/shock wave disturbance characteristics in separation of supersonic cluster munition[J]. Acta Armamentarii, 2011, 32(10): 1206-1211(in Chinese).
    [6] 袁武. 子母弹抛撒流场仿真和气动效应研究[J]. 系统仿真学报, 2016, 28(7): 1552-1560. doi: 10.16182/j.cnki.joss.2016.07.010

    Yuan W. Numerical simulation and aerodynamic effect research for multi-warhead projection[J]. Journal of System Simulation, 2016, 28(7): 1552-1560(in Chinese). doi: 10.16182/j.cnki.joss.2016.07.010
    [7] 高瑞泽, 阎超. 超音速底部流动的大涡模拟研究[J]. 航空计算技术, 2009, 39(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200903007.htm

    Gao R Z, Yan C. Large eddy simulation for supersonic axisymmetric base flow[J]. Aeronautical Computing Technique, 2009, 39(3): 25-28(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200903007.htm
    [8] 高瑞泽, 阎超. LES/RANS混合方法对超声速底部流动的应用[J]. 北京航空航天大学学报, 2011, 37(9): 1095-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201109011.htm

    Gao R Z, Yan C. LES/RANS hybrid method for supersonic axisymmetric base flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1095-1099(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201109011.htm
    [9] Kawai S, Fujii K. Computational study of a supersonic base flow using hybrid turbulence methodology[J]. AIAA Journal, 2005, 43(6): 1265-1275.
    [10] 薛帮猛, 杨永. 基于两方程湍流模型的DES方法在超音速圆柱底部流动计算中的应用[J]. 西北工业大学学报, 2006, 24(5): 544-547. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200605002.htm

    Xue B M, Yang Y. Technical details in applying DES method to computing supersonic cylinder-base flow[J]. Journal of Northwestern Polytechnical University, 2006, 24(5): 544-547(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD200605002.htm
    [11] 张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38(1): 120102. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201701004.htm

    Zhang L, Li J. Numerical simulation of supersonic base flow field based on RANS/LES approaches[J]. ActaAeronautica et Astronautica Sinica, 2017, 38(1): 120102(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201701004.htm
    [12] 肖志祥, 符松. 用RANS/LES混合方法研究超声速底部流动[J]. 计算物理, 2009, 26(2): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL200902007.htm

    Xiao Z X, Fu S. Study on supersonic base flow using RANS/LES methods[J]. Chinese Journal of Compu-tational Physics, 2009, 26(2): 221-230(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL200902007.htm
    [13] Kirchner B M, Elliott G S, Dutton J C. Flow structure in the near wake of an axisymmetric supersonic base flow using tomographic PIV[R]. AIAA 2017-3969, 2017.
    [14] 宋威, 艾邦成. 多体飞行器分离动力学问题研究进展[J/OL]. 航空学报, 2021(2021-08-18). http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25950.

    Song W, Ai B C. Review of multibody separation dyna-mics[J/OL]. Acta Aeronautica et Astronautica Sinica, 2021(2021-08-18). http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2021.25950(inChinese).
    [15] 宋威, 张宁, 朱剑, 等. 风洞投放试验技术的研究现状与应用综述[J]. 航空学报, 2021, 42(6): 024417. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202106013.htm

    Song W, Zhang N, Zhu J, et al. Research status and application of wind tunnel drop test technology: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024417(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202106013.htm
    [16] 宋威, 蒋增辉. 串联飞行器级间分离风洞自由飞试验[J]. 空气动力学学报, 2017, 35(5): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201705014.htm

    Song W, Jiang Z H. Wind tunnel free-flight test for stage separation of tandem layout vehicle[J]. Acta Aerody-namica Sinica, 2017, 35(5): 687-692(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201705014.htm
    [17] 宋威, 鲁伟, 蒋增辉, 等. 内埋武器高速风洞弹射投放模型试验关键技术研究[J]. 力学学报, 2018, 50(6): 1346-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201806008.htm

    Song W, Lu W, Jiang Z H, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201806008.htm
    [18] 宋威, 艾邦成, 蒋增辉, 等. 内埋武器投放分离相容性的风洞投放试验预测与评估[J]. 航空学报, 2020, 41(6): 523415. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202006010.htm

    Song W, Ai B C, Jiang Z H, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523415(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202006010.htm
    [19] 艾邦成, 宋威, 董垒, 等. 内埋武器机弹分离相容性研究进展综述[J]. 航空学报, 2020, 41(10): 023809. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202010002.htm

    Ai B C, Song W, Dong L, et al. Review of aircraft-store separation compatibility of internal weapons[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202010002.htm
    [20] 宋威, 鲁伟, 蒋增辉. 超声速飞行器头罩分离风洞投放模型试验[J]. 实验流体力学, 2017, 31(6): 45-50, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201706007.htm

    Song W, Lu W, Jiang Z H. Wind tunnel drop model test of nose cap separation of supersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 45-50, 70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201706007.htm
    [21] 伍彬, 王韦钰, 钟永建, 等. 导弹助推器级间分离非定常数值模拟研究[J]. 空天防御, 2019, 2(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KTFY201904002.htm

    Wu B, Wang W Y, Zhong Y J, et al. Numerical simulation and study of unsteady separation of missile booster[J]. Air & Space Defense, 2019, 2(4): 7-12(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KTFY201904002.htm
    [22] Butler G, King D, Abate G, et al. Ballistic range tests of store separation at supersonic to hypersonic speeds[R]. AIAA-91-0199, 1991.
    [23] Jung T, Reeder M F, Maple R C. Wind tunnel study of interference effects relating to aft supersonic ejection of a store[R]. AIAA 2006-3363, 2006.
    [24] Jung T, Reeder M, Maple R, et al. Wind tunnel study of interference effects relating to aft supersonic ejection of a store[R]. AIAA 2006-3363, 2006.
    [25] 王元靖, 钱丰学, 畅利侠, 等. 超声速条件下多体干扰与分离试验研究[J]. 实验流体力学, 2014, 28(3): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201403008.htm

    Wang Y J, Qian F X, Chang L X, et al. Investigation on multi-body interference and separation by grid force mea-surement at supersonic condition[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 58-62(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201403008.htm
    [26] Sahu J, Nietubicz C J. Application of chimera technique to projectiles in relative motion[J]. Journal of Spacecraft and Rockets, 32(5): 795-800, doi: 10.2514/3.26686.
    [27] Simko R J. Store separations from a supersonic cone[D]. Ohio: Air Force Institute of Technology, 2006.
    [28] 董金刚, 魏忠武, 赵星宇, 等. 基于并联机构构型的新型CTS试验技术研究[J]. 空气动力学学报, 2020, 38(5): 932-937. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202005012.htm

    Dong J G, Wei Z W, Zhao X Y, et al. A novel parallel mechanism-based CTS test technique for the wind tunnel[J]. Acta Aerodynamica Sinica, 2020, 38(5): 932-937(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202005012.htm
    [29] 董金刚, 张晨凯, 谢峰, 等. 内埋武器超声速分离机弹干扰特性试验研究[J]. 实验流体力学, 2021, 35(3): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202103007.htm

    Dong J G, Zhang C K, Xie F, et al. Experimental investi-gations on the separation interference characteristics of super-sonic internal weapon releasing from the aircraft[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202103007.htm
    [30] 谢峰, 洪冠新, 张晨凯, 等. 捕获轨迹系统并联机构地面标定方法[J]. 航空学报, 2020, 41(1): 423175. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202001024.htm

    Xie F, Hong G X, Zhang C K, et al. Ground calibration method of captive trajectory system parallel mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 423175(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202001024.htm
    [31] Burt M, Miller P, Agrell J. Transonic and supersonic flowfield measurements about axisymmetric afterbodies for validation of advanced CFD codes[C]. AGARD Confe-rence Proceedings, 1994.
    [32] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 113-125.

    Li Z F. Special technique of wind tunnel test[M]. Beijing: Aviation Industry Press, 2010: 113-125(in Chinese).
    [33] 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015: 554-581.

    Li Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 554-581(in Chinese).
    [34] Herrin J L, Dutton J C. Supersonic base flow experiments in the near wake of a cylindrical afterbody[J]. AIAA Journal, 1994, 32(1): 77-83.
    [35] Dutton J C, Herrin J L, Molezzi M J, et al. Recent progress on high-speed separated base flows[R]. AIAA 1995-0472, 1995.
  • 加载中
图(16)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  51
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-02-20
  • 刊出日期:  2022-11-20

目录

    /

    返回文章
    返回