主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无缝襟翼吹气控制机理和地面效应分析

赵光银 姜裕标 王万波 何萌

赵光银, 姜裕标, 王万波, 何萌. 无缝襟翼吹气控制机理和地面效应分析[J]. 气体物理, 2022, 7(4): 53-66. doi: 10.19527/j.cnki.2096-1642.0962
引用本文: 赵光银, 姜裕标, 王万波, 何萌. 无缝襟翼吹气控制机理和地面效应分析[J]. 气体物理, 2022, 7(4): 53-66. doi: 10.19527/j.cnki.2096-1642.0962
ZHAO Guang-yin, JIANG Yu-biao, WANG Wan-bo, HE Meng. Mechanism and Ground Effect Analysis on Blowing Control of a Seamless Flap[J]. PHYSICS OF GASES, 2022, 7(4): 53-66. doi: 10.19527/j.cnki.2096-1642.0962
Citation: ZHAO Guang-yin, JIANG Yu-biao, WANG Wan-bo, HE Meng. Mechanism and Ground Effect Analysis on Blowing Control of a Seamless Flap[J]. PHYSICS OF GASES, 2022, 7(4): 53-66. doi: 10.19527/j.cnki.2096-1642.0962

无缝襟翼吹气控制机理和地面效应分析

doi: 10.19527/j.cnki.2096-1642.0962
详细信息
    作者简介:

    赵光银(1985-)男, 博士, 主要研究方向为主动流动控制基础与应用技术。E-mail: zym19860615@163.com

  • 中图分类号: V211.41+

Mechanism and Ground Effect Analysis on Blowing Control of a Seamless Flap

  • 摘要: 基于Coanda效应的无缝襟翼吹气控制能大幅度提升机翼升力, 改善大型运输类飞机起降性能, 因此研究起降阶段地面效应对吹气控制的影响十分必要。通过数值模拟方法, 从流场变化的角度分析了无缝襟翼吹气控制机理, 以及有/无襟翼吹气时地面效应对翼型气动性能的影响。襟翼吹气使Coanda表面产生局部低压区, 形成指向Coanda表面的压力梯度, 进而引起射流上方的主流偏转和加速, 使整个翼面近壁区产生顺时针方向的速度增量; 翼面压力面的压力增大, 吸力面的吸力增强, 其中主翼上翼面吸力增强是翼型升力增加的主要来源。无吹气时, 地面效应使翼型上/下翼面附近的流速均降低, 上/下翼面的压力均有所提高, 整体上使翼型升力降低。有地面效应时的襟翼吹气增强了下翼面对来流的阻滞作用, 进一步提高了下翼面的压力; 襟翼吹气使上翼面气流加速, 可抵消地面效应引起的上翼面气流减速, 一定程度上减小了地面效应引起的上翼面吸力损失。

     

  • 图  1  GACC-DR模型

    Figure  1.  GACC-DR airfoil profile

    图  2  局部网格(工况1)

    Figure  2.  Local mesh(case 1)

    图  3  计算与试验压力分布[34]对比(Cμ=0.09)

    Figure  3.  Comparison of GACC-DR airfoil pressure distributions at Cμ=0.09 between simulation and experiment[34]

    图  4  0°迎角时计算区域和局部网格

    Figure  4.  Computational domain and local mesh of the airfoil at α=0°

    图  5  无来流时单纯的射流诱导的速度

    Figure  5.  Jet-induced velocity without incoming flows

    图  6  Coanda表面射流引起的压力变化

    Figure  6.  Pressure change caused by the Coanda wall jet

    图  7  吹气控制前后的升力系数

    Figure  7.  Lift coefficients before and after blowing control

    图  8  吹气控制前后壁面压力系数和局部流线

    Figure  8.  Pressure coefficients and local streamlines before and after blowing control

    图  9  吹气控制前后时均流场

    Figure  9.  Time-averaged flow field before and after blowing control

    图  10  吹气引起的平均流场净增量

    Figure  10.  Net increment of average flow field caused by blowing at Cμ=0.01 and Cμ=0.08

    图  11  多射流口方案[36]

    Figure  11.  Illustration of the multiple slotted airfoil[36]

    图  12  α=0°和8°,h/c=0.2引起的速度、压力、密度的净增量

    Figure  12.  Net increment of velocity, pressure and density for α=0° and 8°at h/c=0.2

    图  13  α=0°,h/c=2.0相对于h/c=∞时引起的速度、压力净增量

    Figure  13.  Net increment of velocity and pressure caused by h/c=2.0 relative to h/c=∞

    图  14  α=0°,8°翼型壁面压力系数

    Figure  14.  Wall pressure coefficients at α=0° and 8°

    图  15  吹气加地效时壁面压力系数

    Figure  15.  Wall pressure coefficients with air blowing and ground effect

    图  16  吹气加地面效应时的速度净增量

    Figure  16.  Net increment of velocity with air blowing and ground effect

    表  1  3种网格的参数

    Table  1.   Parameters of the three grids

    case the height of the first grid circumferential grids the total number of grids CL
    1 0.000 11c
    (y+ < 4)
    580 42 348 3.558 6
    2 0.000 055c
    (y+ < 2)
    785 54 959 3.582 3
    3 0.000 025c
    (y+ < 1)
    990 69 412 3.589 5
    下载: 导出CSV

    表  2  吹气后翼面各部分对增升量的贡献率

    Table  2.   Lift increment of each part of the airfoil surface after blowing

    part Cμ=0.01 Cμ=0.08
    upper surface of the flap 6.0% 15.7%
    the entire lower surface 12.3% 9.5%
    upper surface of main wing 81.7% 74.8%
    下载: 导出CSV

    表  3  吹气前后不同离地高度的计算结果

    Table  3.   Calculation results at different heights before and after blowing control

    case without blowing blowing(Cμ=0.028)
    dominant frequency of the flow/Hz CL CD CL CD
    α=0°,h/c=0.2 68.03 1.703 0.131 2.586 0.026
    α=0°,h/c=2.0 74.63 1.765 0.164 3.325 0.034
    α=0°,h/c= ∞ 78.13 1.847 0.181 3.621 0.048
    α=8°,h/c=0.2 59.17 2.086 0.129 2.586 0.045
    α=8°,h/c=2.0 67.11 2.357 0.178 3.249 0.060
    α=8°,h/c= ∞ 69.93 2.507 0.201 3.560 0.077
    下载: 导出CSV
  • [1] 张庆云, 王峥华, 魏猛, 等. 大型水陆两栖飞机增升装置特殊设计综述[J]. 空气动力学学报, 2019, 37(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901002.htm

    Zhang Q Y, Wang Z H, Wei M, et al. Review of high-lift devices design for amphibious aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(1): 19-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201901002.htm
    [2] 孙卫平, 杨康智, 秦何军. 大型水陆两栖飞机吹气襟翼设计与分析验证[J]. 航空动力学报, 2016, 31(4): 903-909. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201604019.htm

    Sun W P, Yang K Z, Qin H J. Design and test of a jet flap for a large amphibian[J]. Journal of Aerospace Power, 2016, 31(4): 903-909(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201604019.htm
    [3] Coanda H. Lifting device Coanda effect[P]. US: 3261162, 1936.
    [4] 中国人民解放军第六O五研究所情况组. 外国水上飞机汇编[G]. 1970.
    [5] Smith D, Dickey E, VonKlein T. The ADVINT program[R]. AIAA 2006-2854, 2012.
    [6] Beck N, Radespiel R, Lenfers C, et al. Aerodynamic effects of propeller slipstream on a wing with circulation control[J]. Journal of Aircraft, 2015, 52(5): 1422-1436. doi: 10.2514/1.C032901
    [7] 翟晨. 大型高抗浪水陆两栖飞机增升装置设计[D]. 南京: 南京航空航天大学, 2019.

    Zhai C. Aerodynamic design of high-lift devices for a large-scale amphibious aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [8] 王妙香, 孙卫平, 秦何军. 水陆两栖飞机内吹式襟翼优化设计[J]. 航空学报, 2016, 37(1): 300-309. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601024.htm

    Wang M X, Sun W P, Qin H J. Optimization design of an internal blown flap used in large amphi-bian[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 300-309(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201601024.htm
    [9] 姜裕标, 张刘, 黄勇, 等. 内吹式襟翼环量控制翼型升力响应特性[J]. 航空学报, 2018, 39(7): 121807. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807004.htm

    Jiang Y B, Zhang L, Huang Y, et al. Lift response characteristics of a circulation control airfoil with internally blown flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121807(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201807004.htm
    [10] 刘睿, 白俊强, 邱亚松, 等. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报, 2020, 38(1): 58-67. doi: 10.3969/j.issn.1000-2758.2020.01.008

    Liu R, Bai J Q, Qiu Y S, et al. Effects of geometrical parameters of internal blown flap and its optimal design[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 58-67(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.01.008
    [11] 朱自强, 吴宗成. 环量控制技术研究[J]. 航空学报, 2016, 37(2): 411-428. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602006.htm

    Zhu Z Q, Wu Z C. Study of the circulationcontrol technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602006.htm
    [12] 朱一西, 陆志良, 郭同庆. 多段翼型非定常地面效应数值模拟[J]. 空气动力学学报, 2015, 33(6): 806-811. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201506015.htm

    Zhu Y X, Lu Z L, Guo T Q. Numerical simulation of multi-element airfoil in unsteady ground effect[J]. Acta Aerodynamica Sinica, 2015, 33(6): 806-811(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201506015.htm
    [13] 屈秋林, 刘沛清, 秦绪国. 地效飞行器大迎角近地面飞行分离流动数值研究[J]. 航空学报, 2007, 28(1): 72-77. doi: 10.3321/j.issn:1000-6893.2007.01.013

    Qu Q L, Liu P Q, Qin X G. Numerical research on separated flow around a WIG craft in flight close to ground at high incidence angle[J]. Acta Aeronauticaet Astronautica Sinica, 2007, 28(1): 72-77(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.01.013
    [14] 米百刚, 詹浩. 近地、水面时的飞行器动态稳定特性数值模拟[J]. 船舶力学, 2017, 21(11): 1348-1355. doi: 10.3969/j.issn.1007-7294.2017.11.004

    Mi B G, Zhan H. Numerical simulation of aircraft dyna-mic stability characteristics flying over ground and water surface[J]. Journal of Ship Mechanics, 2017, 21(11): 1348-1355(in Chinese). doi: 10.3969/j.issn.1007-7294.2017.11.004
    [15] Hiemcke C. NACA5312 in ground effect-wind tunnel and panel code studies[R]. AIAA 97-2320, 1997.
    [16] 米百刚, 詹浩, 朱军. 二维干净构型、增升构型地面效应的数值模拟研究[J]. 应用力学学报, 2013, 30(6): 822-827. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201306005.htm

    Mi B G, Zhan H, Zhu J. Numerical simulation on aerodynamic characteristic of clean and multi-element airfoils in ground effect[J]. Chinese Journal of Applied Mechanics, 2013, 30(6): 822-827(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201306005.htm
    [17] Ahmed M R, Takasaki T, Kohama Y. Aerodynamics of a NACA4412 airfoil in ground effect[J]. AIAA Journal, 2007, 45(1): 37-47. doi: 10.2514/1.23872
    [18] Qu Q L, Wang W, Liu P Q, et al. Airfoil aerodynamics in ground effect for wide range of angles of attack[J]. AIAA Journal, 2015, 53(4): 1048-1061. doi: 10.2514/1.J053366
    [19] Qu Q L, Wang W, Liu P Q, et al. Aerodynamics and flow mechanics of a two-element airfoil in ground effect[R]. AIAA 2015-0550, 2015.
    [20] 肖涛, 代钦. Gurney襟翼对机翼地面效应气动特性和流动结构的影响实验研究[J]. 空气动力学学报, 2013, 31(5): 572-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201305006.htm

    Xiao T, Dai Q. The experimental study of aerodynamics and flow structures of a wing with Gurney flaps in ground effect[J]. Acta Aerodynamica Sinica, 2013, 31(5): 572-578(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201305006.htm
    [21] Zerihan J, Zhang X. Aerodynamics of Gurney flaps on a wing in ground effect[J]. AIAA Journal, 2001, 39(5): 772-780. doi: 10.2514/2.1396
    [22] 秦绪国, 刘沛清, 屈秋林, 等. 多段翼型地面效应数值模拟与分析[J]. 航空动力学报, 2011, 26(4): 890-896. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201104023.htm

    Qin X G, Liu P Q, Qu Q L, et al. Numerical simulation and analysis on aerodynamics of three-element airfoil in ground effect[J]. Journal of Aerospace Power, 2011, 26(4): 890-896(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201104023.htm
    [23] 朱一西. 增升装置的非定常地面效应数值模拟[D]. 南京: 南京航空航天大学, 2017.

    Zhu Y X. Numerical simulation of high lift devices in unsteady ground effect[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [24] 应成炯, 杨韡, 杨志刚. 地面效应下的机翼失速数值模拟[J]. 飞行力学, 2010, 28(5): 9-12, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201005003.htm

    Ying C J, Yang W, Yang Z G. Numerical simulation on stall of wing in ground effect[J]. Flight Dynamics, 2010, 28(5): 9-12, 15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201005003.htm
    [25] 秦绪国, 刘沛清, 屈秋林, 等. 三维多段机翼地面效应数值模拟[J]. 航空学报, 2011, 32(2): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201102010.htm

    Qin X G, Liu P Q, Qu Q L, et al. Numerical simulation on 3D multi-element wings in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 257-264(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201102010.htm
    [26] 陈世适, 熊芬芬. 平板翼型地面效应数值模拟与分析[J]. 飞行力学, 2013, 31(6): 486-490. doi: 10.3969/j.issn.1002-0853.2013.06.002

    Chen S S, Xiong F F. Numerical simulation and analysis on aerodynamics of flat plate airfoil in ground effect[J]. Flight Dynamics, 2013, 31(6): 486-490(in Chinese). doi: 10.3969/j.issn.1002-0853.2013.06.002
    [27] Bulgarelli U P, Greco M, Landrini M, et al. A simple model for the aero-hydrodynamics of ekranoplans[C]. Proceedings of the AGARD Fluid Dynamics Panel Workshop on High Speed Body Motion in Water. Kiev, Ukraine, 1997.
    [28] 陈新, 单雪雄. 三维机翼掠海飞行时非定常气动力和兴波的数值计算[C]. 2003空气动力学前沿研究论文集. 北京: 中国宇航出版社, 2003: 132-137.

    Chen X, Shan X X. Numerical simulation on unsteady aerodynamics and wave making of a wing flying over offing[C]. 2003 Symposium on Research Frontier of Aero-dynamics. Beijing: China Astronautic Publishing House, 2003: 132-137(in Chinese).
    [29] Patterson B W, Angle G M, Smith J E. Lift enhancement of circulation control as influenced by ground effect[R]. AIAA 2011-3652, 2011.
    [30] Patterson B W, Angle G M, Smith J E. Circulation control lifting surface augmented by ground effect[R]. AIAA 2012-0860, 2012.
    [31] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
    [32] 姜裕标, 王万波, 常智强, 等. 定常吹气对无缝襟翼翼型地面效应影响的数值模拟[J]. 航空学报, 2017, 38(6): 120751. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201706005.htm

    Jiang Y B, Wang W B, Chang Z Q, et al. Numerical simulation of effect of steady blowing slot-less flap airfoil in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120751(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201706005.htm
    [33] 刘睿, 白俊强, 邱亚松, 等. 内吹式襟翼几何参数影响研究与优化设计[J]. 西北工业大学学报, 2020, 38(1): 58-67. doi: 10.3969/j.issn.1000-2758.2020.01.008

    Liu R, Bai J Q, Qiu Y S, et al. Effects of geometrical parameters of internal blown flap and its optimal design[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 58-67(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.01.008
    [34] Lee-Rausch E M, Vatsa V N, Rumsey C L. Compu-tational analysis of dual radius circulation control airfoils[R]. AIAA 2006-3012, 2006.
    [35] Beck N, Radespiel R, Lenfers C, et al. Aerodynamic effects of propeller slipstream on a wing with circulation control[J]. Journal of Aircraft, 2015, 52(5): 1422-1436. doi: 10.2514/1.C032901
    [36] 王春雨, 孙茂. 多喷口高效能厚翼的研究[J]. 力学学报, 1999, 31(5): 611-617. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199905010.htm

    Wang C Y, Sun M. Efficient boundary layer control on thick airfoils using multiple slots blowing at small speeds[J]. Acta Mechanica Sinica, 1999, 31(5): 611-617(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB199905010.htm
    [37] 姜裕标, 王万波, 赵光银, 等. 地面效应对射流增升翼型性能影响实验研究[J]. 空气动力学学报, 2020, 38(5): 887-895. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202005006.htm

    Jiang Y B, Wang W B, Zhao G Y, et al. Experimental investigation on blowing control airfoil influenced by ground effect[J]. Acta Aerodynamica Sinica, 2020, 38(5): 887-895(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202005006.htm
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  29
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-11-24
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回