主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升力体外形布局参数对横侧向耦合稳定性的影响分析

张青青 张石玉 赵俊波 赵力宁

张青青, 张石玉, 赵俊波, 赵力宁. 升力体外形布局参数对横侧向耦合稳定性的影响分析[J]. 气体物理, 2021, 6(6): 20-28. doi: 10.19527/j.cnki.2096-1642.0920
引用本文: 张青青, 张石玉, 赵俊波, 赵力宁. 升力体外形布局参数对横侧向耦合稳定性的影响分析[J]. 气体物理, 2021, 6(6): 20-28. doi: 10.19527/j.cnki.2096-1642.0920
ZHANG Qing-qing, ZHANG Shi-yu, ZHAO Jun-bo, ZHAO Li-ning. Lateral-Direction Stability Analysis on Aerodynamic Shape Parameters for a Lifting-Body Configuration[J]. PHYSICS OF GASES, 2021, 6(6): 20-28. doi: 10.19527/j.cnki.2096-1642.0920
Citation: ZHANG Qing-qing, ZHANG Shi-yu, ZHAO Jun-bo, ZHAO Li-ning. Lateral-Direction Stability Analysis on Aerodynamic Shape Parameters for a Lifting-Body Configuration[J]. PHYSICS OF GASES, 2021, 6(6): 20-28. doi: 10.19527/j.cnki.2096-1642.0920

升力体外形布局参数对横侧向耦合稳定性的影响分析

doi: 10.19527/j.cnki.2096-1642.0920
详细信息
    作者简介:

    张青青(1987-)女, 硕士, 主要研究飞行器外形参数化建模与气动优化设计.E-mail: herenow10903@163.com

  • 中图分类号: V211.41

Lateral-Direction Stability Analysis on Aerodynamic Shape Parameters for a Lifting-Body Configuration

  • 摘要: 针对高速飞行器存在横侧向耦合易失控问题,建立了基于部件组合思想的CST几何外形参数化建模方法,以升力体外形为例,采用拉丁超立方试验设计方法和高速气动特性快速分析方法,分析了升力体主要布局参数对横侧向耦合稳定性参数开环动态偏离稳定判据(Cnβ,dyn)和闭环横向控制偏离判据(LCDP)的影响规律.升力体外形主导布局参数对横向操纵滚转反逆参数LCDP是二次非线性影响,横侧向稳定性的主导布局参数随着攻角变化有明显变化.文章为耦合稳定性影响规律研究建立了有效的分析方法,研究结论可为高超声速升力体式飞行器总体抗失控设计提供规律建议.

     

  • 图  1  部件组合CST参数化建模流程

    Figure  1.  Process of CST parametric modeling based on part combination

    图  2  截面曲线CST参数化建模及几何绝对误差

    Figure  2.  Parametric modeling of section curve and geometric absolute error

    图  3  某升力体CST参数化建模外形

    Figure  3.  Parameterized shape of a lifting body

    图  4  某升力体数模与参数化建模外形气动力估算误差(Ma=5)

    Figure  4.  Aerodynamic estimation errors of lifting-body CAD shape and parametric shape(Ma=5)

    图  5  某升力体工程估算与CFD计算气动力及力矩系数变化曲线对比(Ma=5)

    Figure  5.  Comparison between the estimated values and CFD calculation of the lifting-body′s aerodynamic coefficients(Ma=5)

    图  6  升力体工程估算与CFD计算耦合稳定性对比

    Figure  6.  Comparison between the estimated values and CFD calculation of the lifting-body′s coupling stability parameters

    图  7  正交与拉丁超立方设计对比(9个样本点)

    Figure  7.  Comparison between the orthogonal design and Latin hypercube design(9 sample points)

    图  8  升力体外形参数示意

    Figure  8.  Geometry parameters of a lifting body

    图  9  升力体布局参数对Cnβ, dyn影响的Pareto图

    Figure  9.  Pareto diagram of the influence of lifting-body′s main shape parameters on Cnβ, dyn

    图  10  升力体布局参数对LCDP影响的Pareto图

    Figure  10.  Pareto diagram of the influence of lifting-body′s main shape parameters on LCDP

    表  1  升力体外形参数表

    Table  1.   Geometry parameter range of a lifting body

    parameters parameter declaration lower upper baseline
    x1 the length of the body′s foreside 0.5 0.7 0.6
    x2 the length of the body′s hindside 0.26 0.46 0.36
    x3 the height of the body′s bottom 0.1 0.3 0.2
    x4 the length of the vertical fin 0.01 0.2 0.08
    x5 the length of the vertical fin′s foreside 0.1 0.3 0.2
    x6 the length of the vertical fin′s hindside 0.01 0.2 0.1
    x7 the length of the body′s side direction cut 0.15 0.35 0.25
    x8 the width of the body′s bottom 0.4 0.6 0.5
    x9 the location of the flap 0.01 0.1 0.03
    x10 the length of the flap 0.01 0.2 0.08
    x11 the chord of the flap 0.01 0.2 0.1
    下载: 导出CSV

    表  2  气动分析状态

    Table  2.   State of areodynamic analysis on a lifting body

    Ma α/(°) δde/(°)
    5, 15 0, 5, 10, 20, 30, 40 0, 10
    下载: 导出CSV

    表  3  偏航动态稳定性参数Cnβ, dyn系数表线性项

    Table  3.   Linear terms of coefficient table on dynamic directional stability parameter

    Cnβ, dyn α=0° α=40°
    Ma=5 Ma=15 Ma=5 Ma=15
    constant 0.030 08 0.025 04 0.033 82 0.012 12
    x1 -0.035 21 -0.028 57 -0.034 65 -0.012 18
    x2 0.006 39 0.003 31 -0.010 52 0.010 30
    x3 0.203 17 0.195 60 0.020 60 -0.007 62
    x4 0.050 06 0.029 07 0.067 13 0.044 02
    x5 -0.018 45 -0.017 81 -0.007 43 0.001 38
    x6 0.010 80 0.002 34 0.021 02 0.015 25
    x7 -0.047 56 -0.044 61 -0.031 26 -0.014 83
    x8 -0.078 34 -0.066 46 -0.060 57 -0.019 30
    x9 -0.023 39 -0.017 31 -0.013 30 -0.003 06
    x10 -0.014 84 -0.012 50 -0.011 14 -0.003 41
    x11 0.002 85 0.001 98 -0.000 85 0.001 80
    下载: 导出CSV

    表  4  横向操纵滚转反逆参数LCDP系数表线性项

    Table  4.   Linear terms of coefficient table on lateral control departure parameter(LCDP)

    LCDP α=0° α=40°
    Ma=5 Ma=15 Ma=5 Ma=15
    constant 0.038 21 0.024 34 0.018 30 0.028 23
    x1 -0.045 31 -0.029 91 -0.037 17 -0.049 54
    x2 0.003 10 0.006 85 -0.005 82 -0.018 93
    x3 0.199 53 0.196 18 0.010 24 -0.020 50
    x4 0.051 98 0.031 58 0.047 78 0.033 40
    x5 -0.022 39 -0.017 89 -0.003 91 -0.009 59
    x6 0.007 48 0.002 52 0.004 48 -0.003 38
    x7 -0.052 27 -0.043 32 -0.011 63 -0.012 58
    x8 -0.091 07 -0.066 63 -0.029 76 -0.035 70
    x9 -0.021 55 -0.013 77 0.074 16 0.070 01
    x10 -0.019 93 -0.014 00 0.037 12 0.034 30
    x11 0.003 15 0.005 06 0.016 54 0.011 62
    下载: 导出CSV
  • [1] 祝立国, 王永丰, 庄逢甘, 等. Weissman图的产生、发展及其在再入航天飞行器气动布局设计中的应用[J]. 宇航学报, 2009, 30(1): 13-17. doi: 10.3873/j.issn.1000-1328.2009.00.003

    Zhu L G, Wang Y F, Zhuang F G, et al. The derivation, development of Weissman chart and applications on configuration design of reentry vehicle[J]. Journal of Astronautics, 2009, 30(1): 13-17(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.00.003
    [2] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022

    Zhu L G, Wang Y F, Zhuang F G, et al. The lateral direc-tional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.022
    [3] 王颖, 闵昌万, 刘秀明, 等. 类HTV-2飞行器横侧向稳定设计研究[J]. 宇航学报, 2017, 38(6): 583-589.

    Wang Y, Min C W, Liu X M, et al. Study on lateral-directional stable design of HTV-2 like Vehicle[J]. Journal of Astronautics, 2017, 38(6): 583-589(in Chinese).
    [4] 杜涛, 陈宇, 蔡巧言, 等. 高超声速飞行器先进气动布局的设计原理研究[J]. 空气动力学学报, 2015, 33(4): 501-509. doi: 10.7638/kqdlxxb-2013.0106

    Du T, Chen Y, Cai Q Y, et al. Research on aerodynamic configuration design principle for advanced hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(4): 501-509(in Chinese). doi: 10.7638/kqdlxxb-2013.0106
    [5] 闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3): 1-10.

    Min C W. The Aerodynamic configuration criteria for the lateral-directional stability of hypersonic vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(3): 1-10(in Chinese).
    [6] Kulfan B M. Recent extensions and applications of the "CST" universal parametric geometry representation method[R]. AIAA 2007-7709, 2007.
    [7] Kulfan B M. Bussoletti J E. "Fundamental" parametric geometry representations for aircraft component shapes[R]. AIAA 2006-6948, 2006.
    [8] Kulfan B M. Universal parametric geometry representations method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
    [9] Samareh J A. Survey of shape parameterization tech-niques for high-fidelity multidisciplinary shape optimi-zation[J]. AIAA Journal, 2001, 49(5): 234-254. http://www.onacademic.com/detail/journal_1000035989984210_431e.html
    [10] Mousavi A, Castonguay P, Nadarajah S K. Survey of shape parameterization techniques and its effect on three-dimensional aerodynamic shape optimization[C]. 18th AIAA Computational Fluid Dynamics Conference, 2007.
    [11] Sripawadkul V, Padulo M, Guenov M. A comparison of airfoil shape parameterization techniques for early design optimization[R]. AIAA2010-9050, 2010.
    [12] 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633.

    Guan X H, Li Z K, Song B F. A study on CST aerody-namic shape parameterization method[J]. Acta Aeronau-tica et Astronautica Sinica, 2012, 33(4): 625-633(in Chinese).
    [13] 粟华, 龚春林, 谷良贤. 基于三维CST建模方法的两层气动外形优化策略[J]. 固体火箭技术, 2014, 37(1): 1-7.

    Su H, Gong C L, Gu L X. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method[J]. Journal of Solid Rocket Techno-logy, 2014, 37(1): 1-7(in Chinese).
    [14] Anderson J D. Hypersonic and high-temperature gas dynamic: second edition[M]. AIAA, 2006: 31-52.
    [15] 赖宇阳. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012.

    Lai Y Y. Optimization theory and detailed example of Isight[M]. Beijing: Beihang University Press, 2012(in Chinese).
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  267
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 修回日期:  2021-08-25

目录

    /

    返回文章
    返回