主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合失稳模式与控制策略综合验证技术

石伟 张静 郑宏涛 蔡巧言 李贵成

石伟, 张静, 郑宏涛, 蔡巧言, 李贵成. 耦合失稳模式与控制策略综合验证技术[J]. 气体物理, 2021, 6(6): 52-58. doi: 10.19527/j.cnki.2096-1642.0918
引用本文: 石伟, 张静, 郑宏涛, 蔡巧言, 李贵成. 耦合失稳模式与控制策略综合验证技术[J]. 气体物理, 2021, 6(6): 52-58. doi: 10.19527/j.cnki.2096-1642.0918
SHI Wei, ZHANG Jing, ZHENG Hong-tao, CAI Qiao-yan, LI Gui-cheng. Comprehensive Verification of Coupling Instability and Control Strategy[J]. PHYSICS OF GASES, 2021, 6(6): 52-58. doi: 10.19527/j.cnki.2096-1642.0918
Citation: SHI Wei, ZHANG Jing, ZHENG Hong-tao, CAI Qiao-yan, LI Gui-cheng. Comprehensive Verification of Coupling Instability and Control Strategy[J]. PHYSICS OF GASES, 2021, 6(6): 52-58. doi: 10.19527/j.cnki.2096-1642.0918

耦合失稳模式与控制策略综合验证技术

doi: 10.19527/j.cnki.2096-1642.0918
详细信息
    作者简介:

    石伟(1986-)男, 博士, 工程师, 主要研究方向为高速面对称飞行器气动力热设计.E-mail: 13269388346@163.com

  • 中图分类号: O354.4

Comprehensive Verification of Coupling Instability and Control Strategy

  • 摘要: 为实现宽速域大空域飞行,面对称布局逐渐成为新型航天飞行器的典型特征,随之而来的还有横航向耦合问题,以及由此导致的失稳现象等.文章阐述了新型航天飞行器横航向耦合问题的成因和研究重要性,给出了针对耦合失稳模式和新型控制策略的综合验证方案,通过CFD-RBD仿真方法验证了荷兰滚失稳模式和副翼操纵耦合失稳模式的正确性,通过风洞虚拟飞行试验技术验证了新型控制策略的有效性,它可降低舵偏需求45%以上.

     

  • 图  1  新型航天飞行器飞行剖面

    Figure  1.  Flight profile of new aerospace vehicle

    图  2  典型面对称航天飞行器航向稳定性

    Figure  2.  Directional stability of typical plane-symmetric aerospace vehicle

    图  3  其他通道耦合作用与偏航通道控制能力对比

    Figure  3.  Comparison between coupling effect of other channels and controll ability of yaw channel

    图  4  不同俯仰舵偏下的俯仰力矩系数(Ma=5)

    Figure  4.  Pitch moment coefficient at different elevator angles(Ma=5)

    图  5  稳定性参数(Ma=5)

    Figure  5.  Stability parameters

    图  6  荷兰滚失稳模式侧滑角动力学线性仿真结果

    Figure  6.  Linear dynamics analysis of sideslip anglefor Dutch roll instability

    图  7  荷兰滚失稳模式CFD-RBD仿真结果

    Figure  7.  Results of CFD-RBD for Dutch roll instability

    图  8  副翼操纵耦合失稳模式滚转角动力学线性仿真结果

    Figure  8.  Linear dynamics analysis of roll anglefor lateral control instability

    图  9  副翼操纵耦合失稳模式CFD-RBD仿真结果

    Figure  9.  Results of CFD-RBD for lateral control instability

    图  10  支撑机构及转动轴线示意图

    Figure  10.  Sketch of supporting mechanism and rotation axises

    表  1  姿态保持模式各策略舵面偏转量对比

    Table  1.   Comparison of deflection angles between different control strategies under attitude hold mode

    strategies maximum deflection angle of δa/(°) maximum deflection angle of δr/(°)
    conventional control strategy 5 -16.5
    first new control strategy 1.9 -7.6
    second new control strategy -2.4 0
    下载: 导出CSV

    表  2  机动控制模式各策略舵面偏转量对比

    Table  2.   Comparison of deflection angles between different control strategies under maneuver control mode

    strategies maximum deflection angle of δa/(°) maximum deflection angle of δr/(°)
    conventional control strategy 4.8 -17
    first new control strategy 2.65 -8
    second new control strategy 1.56 0
    下载: 导出CSV
  • [1] 蔡巧言, 杜涛, 朱广生. 新型高速飞行器的气动设计技术探讨[J]. 宇航学报, 2009, 30(6): 2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006

    Cai Q Y, Du T, Zhu G S. The aerodynamic design technology for new type hypersonic vehicle[J]. Journal of Astronautics, 2009, 30(6): 2086-2091(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.006
    [2] 包为民. 航天飞行器控制技术研究现状与发展趋势[J]. 自动化学报, 2013, 39(6): 697-702. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201306003.htm

    Bao W M. Present situation and development tendency of aerospace control techniques[J]. Acta Automatica Sinica, 2013, 39(6): 697-702(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201306003.htm
    [3] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44: 201410. doi: 10.6052/1000-0992-14-027

    Zhang L P, Ma R, Chang X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44: 201410(in Chinese). doi: 10.6052/1000-0992-14-027
    [4] 李锋, 杨云军, 刘周, 等. 飞行器气动/飞行/控制一体化耦合模拟技术[J]. 空气动力学学报, 2015, 33(2): 156-161. doi: 10.7638/kqdlxxb-2014.0097

    Li F, Yang Y J, Liu Z, et al. Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J]. Acta Aerodynamics Sinica, 2015, 33(2): 156-161(in Chinese). doi: 10.7638/kqdlxxb-2014.0097
    [5] Costello M, Gatto S, Sahu J. Using CFD/RBD results to generate aerodynamic models for projectile flight simula-tion[C]. AIAA Atmospheric Flight Mechanics Conferen-ce and Exhibit, Hilton Head, South Carolina, USA, 2007.
    [6] Costello M, Gatto S, Sahu J. Using Computational fluid dynamics-rigid body dynamic (CFD-RBD) results to generate aerodynamic models for projectile flight simulation[R]. ARL-TR-4270, 2007.
    [7] Sahu J, Heavey K R. Parallel CFD computations of projectile aerodynamics with a flow control mechanism[J]. Computers & Fluids, 2013, 88: 678-687. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0045793013001138&originContentFamily=serial&_origin=article&_ts=1483816668&md5=1655fb044d39460ffcf1460de3a9f50d
    [8] Cai H M, Wu Z L, Li Z X, et al. Computational fluid dynamics-based virtual flight simula-tion of a flying wing micro air vehicle[J]. Journal of Aerospace Engineering, 2016, 230(6): 1094-1102. http://www.onacademic.com/detail/journal_1000038246854610_8b77.html
    [9] 李乾, 赵忠良, 王晓冰, 等. 一种近空间高速飞行器滚转稳定性研究[J]. 航空学报, 2018, 39(3): 121553. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201803001.htm

    Li Q, Zhao Z L, Wang X B, et al. Rolling stability research of a near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121553(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201803001.htm
    [10] Magill J C, Cataldi P, Morency J R, et al. Demonstra-tion of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 624-633. doi: 10.2514/1.39188
    [11] Rein M, Höhler G, Schütte A, et al. Ground-based simulation of complex maneuvers of a delta-wing aircraft[J]. Journal of Aircraft, 2008, 45(1): 286-291. doi: 10.2514/1.30033
    [12] Pattinson J, Lowenberg M H, Goman M G. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification[J]. Journal of Aircraft, 2013, 50(2): 551-566. doi: 10.2514/1.C031924
    [13] Pattinson J, Lowenberg M H, Goman M G. Investigation of poststall pitch oscillations of an aircraft wind-tunnel model[J]. Journal of Aircraft, 2013, 50(6): 1843-1855. doi: 10.2514/1.C032184
    [14] 赵忠良, 吴军强, 李浩, 等. 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016, 37(2): 504-512. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602014.htm

    Zhao Z L, Wu J Q, Li H, et al. Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 504-512(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602014.htm
    [15] 赵忠良, 吴军强, 李浩, 等. 高机动导弹气动/运动/控制耦合的风洞虚拟飞行试验技术[J]. 空气动力学学报, 2016, 34(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201601005.htm

    Zhao Z L, Wu J Q, Li H, et al. Wind tunnel based virtual flight testing of aerodynamics, flight dynamics and flight control for high maneuver missle[J]. Acta Aerodynamica Sinica, 2016, 34(1): 14-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201601005.htm
    [16] 郭林亮, 祝明红, 傅澔, 等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报, 2017, 35(5): 708-717, 726. doi: 10.7638/kqdlxxb-2017.0164

    Guo L L, Zhu M H, Fu H, et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717, 726(in Chinese). doi: 10.7638/kqdlxxb-2017.0164
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  149
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 修回日期:  2021-07-07

目录

    /

    返回文章
    返回