主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击射流激波振荡与抑制

李庠儒 刘年华 刘露菡 何枫

李庠儒, 刘年华, 刘露菡, 何枫. 冲击射流激波振荡与抑制[J]. 气体物理, 2022, 7(2): 26-31. doi: 10.19527/j.cnki.2096-1642.0898
引用本文: 李庠儒, 刘年华, 刘露菡, 何枫. 冲击射流激波振荡与抑制[J]. 气体物理, 2022, 7(2): 26-31. doi: 10.19527/j.cnki.2096-1642.0898
LI Xiang-ru, LIU Nian-hua, LIU Lu-han, HE Feng. Suppression on Shock Oscillation of Impinging Jet[J]. PHYSICS OF GASES, 2022, 7(2): 26-31. doi: 10.19527/j.cnki.2096-1642.0898
Citation: LI Xiang-ru, LIU Nian-hua, LIU Lu-han, HE Feng. Suppression on Shock Oscillation of Impinging Jet[J]. PHYSICS OF GASES, 2022, 7(2): 26-31. doi: 10.19527/j.cnki.2096-1642.0898

冲击射流激波振荡与抑制

doi: 10.19527/j.cnki.2096-1642.0898
基金项目: 

国家重点基础研究发展计划(973计划) 2012CB720100

详细信息
    作者简介:

    李庠儒(1992-)男, 博士, 研究欠膨胀自由/冲击射流的流动特性与气动噪声.E-mail: lixiangru0203@163.com

    通讯作者:

    何枫(1963-)女, 教授, 研究欠膨胀自由/冲击射流的流动特性与气动噪声.E-mail: hefeng@tsinghua.edu.cn

  • 中图分类号: O358

Suppression on Shock Oscillation of Impinging Jet

  • 摘要: 欠膨胀冲击射流具有复杂的激波结构,并伴随产生高幅值的离散频率单音.通过高速摄像获取的纹影图像并结合噪声测量,对欠膨胀冲击射流激波振荡过程、剪切层不稳定波的模态和离散频率单音的产生进行了系列研究.给出了冲击距离为5倍喷嘴出口直径的复杂流动实验结果分析,射流剪切层不稳定波有对称和非对称两种模态,发现不同模态下的离散频率单音声源位于射流冲击平板后的不稳定的流动结构处.反馈声波在喷嘴唇口对剪切层扰动激励,使剪切层不稳定波向下游发展.激波结构与剪切层相互作用发生振荡,并与不稳定波模态的特征相关.通过消弱反馈声波在喷嘴唇口对剪切层的扰动,可消除离散频率的冲击单音,降低噪声,同时也抑制了激波振荡,使得激波结构趋于稳定.

     

  • 图  1  实验系统结构示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  纹影实验系统示意图

    Figure  2.  Schematic diagram of schlieren equipment

    图  3  实验喷嘴结构示意图

    Figure  3.  Schematic diagram of nozzles

    图  4  原始喷嘴欠膨胀冲击射流噪声频谱图

    Figure  4.  Noise spectrum of underexpanded impinging jet of original nozzle

    图  5  NPR=3.0欠膨胀冲击射流激波振荡过程

    Figure  5.  Shock oscillation process of underexpanded impinging jet, NPR=3.0

    图  6  NPR=3.5欠膨胀冲击射流激波振荡过程

    Figure  6.  Shock oscillation process of underexpanded impinging jet, NPR=3.5

    图  7  NPR=3.5欠膨胀冲击射流反馈声波在喷嘴出口附近对剪切层的激励过程

    Figure  7.  Excitation process of the upstream-propagating acoustic wave on the shear layer near the nozzle exit

    图  8  欠膨胀冲击射流噪声频谱图对比

    Figure  8.  Noise spectra of the modified nozzle and original nozzle under two operating conditions

    图  9  欠膨胀冲击射流瞬时纹影图对比

    Figure  9.  Comparison of instantaneous schlieren images of underexpanded impinging jet

    图  10  欠膨胀冲击射流平均纹影图对比

    Figure  10.  Comparison of average schlieren images of underexpanded impinging jet

  • [1] Weightman J L, Amili O, Honnery D, et al. Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet[J]. Journal of Fluid Mechanics, 2019, 862: 421-448. doi: 10.1017/jfm.2018.957
    [2] Henderson L F. Experiments on the impingement of a supersonic jet on a flat plate[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1966, 17(5): 553-569. doi: 10.1007/BF01597237
    [3] Donaldson C D, Snedeker R S. A study of free jet impingement. Part 1. Mean properties of free and impinging jets[J]. Journal of Fluid Mechanics, 1971, 45(2): 281-319. doi: 10.1017/S0022112071000053
    [4] Donaldson C D, Snedeker R S, Margolis D P. A study of free jet impingement. Part 2. Free jet turbulent structure and impingement heat transfer[J]. Journal of Fluid Mechanics, 1971, 45(2): 477-512.
    [5] Powell A. The sound-producing oscillations of round underexpanded jet simpinging on normal plates[J]. The Journal of the Acoustical Society of America, 1988, 83(2): 515-533. doi: 10.1121/1.396146
    [6] Henderson B. The connection between sound production and jet structure of the supersonic impinging jet[J]. The Journal of the Acoustical Society of America, 2002, 111(2): 735-747. doi: 10.1121/1.1436069
    [7] Marsh A H. Noise measurements around a subsonic air jet impinging on a plane, rigid surface[J]. The Journal of the Acoustical Society of America, 1961, 33(8): 1065. doi: 10.1121/1.1908894
    [8] Ho C M, Nosseir N S. Dynamics of an impinging jet. Part 1. The feedback phenomenon[J]. Journal of Fluid Mechanics, 1981, 105: 119-142. doi: 10.1017/S0022112081003133
    [9] Nosseir N S, Ho C M. Dynamics of an impinging jet. Part 2. The noise generation[J]. Journal of Fluid Mechanics, 1982, 116: 379-391. doi: 10.1017/S0022112082000512
    [10] Tam C K, Ahuja K K. Theoretical model of discrete tone generation by impinging jets[J]. Journal of Fluid Mechanics, 1990, 214: 67-87.
    [11] Mitchell D M, Honnery D R, Soria J. The visualization of the acoustic feedback loop in impinging underexpanded supersonic jet flows using ultra-high frame rate schlieren[J]. Journal of Visualization, 2012, 15(4): 333-341. doi: 10.1007/s12650-012-0139-9
    [12] Weightman J L, Amili O, Honnery D, et al. An explanation for the phase lag in supersonic jet impingement[J]. Journal of Fluid Mechanics, 2017, 815: 8R1.
    [13] Henderson B, Powell A. Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates[J]. Journal of Sound and Vibration, 1993, 168(2): 307-326. doi: 10.1006/jsvi.1993.1375
    [14] Edgington-Mitchell D. Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets-A review[J]. International Journal of Aeroacoustics, 2019, 18(2/3): 118-188.
    [15] Weightman J L, Amili O, Honnery D, et al. On the effects of nozzle lip thickness on the azimuthal mode selection of a supersonic impinging flow[R]. AIAA 2017-3031, 2017.
    [16] Powis A T, Brunet R J, Lynch J P, et al. Impingementtones and associated shock instabilities in supersonic plug nozzle flows[J]. AIAA Journal, 2016, 54(9): 2843-2851. doi: 10.2514/1.J054429
    [17] Gojon R, Bogey C. Flow structure oscillations and tone production in underexpanded impinging round jets[J]. AIAA Journal, 2017, 55(6): 1792-1805. doi: 10.2514/1.J055618
  • 加载中
图(10)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  177
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2020-12-31
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回