主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar介质感应耦合等离子加热器能量转化与流动特性

朱兴营 陈海群 曾徽 董永晖 周法 刘金涛

朱兴营, 陈海群, 曾徽, 董永晖, 周法, 刘金涛. Ar介质感应耦合等离子加热器能量转化与流动特性[J]. 气体物理, 2022, 7(1): 63-69. doi: 10.19527/j.cnki.2096-1642.0895
引用本文: 朱兴营, 陈海群, 曾徽, 董永晖, 周法, 刘金涛. Ar介质感应耦合等离子加热器能量转化与流动特性[J]. 气体物理, 2022, 7(1): 63-69. doi: 10.19527/j.cnki.2096-1642.0895
ZHU Xing-ying, CHEN Hai-qun, ZENG Hui, DONG Yong-hui, ZHOU Fa, LIU Jin-tao. Energy Conversion and Flow Characteristics of Argon Inductively Coupled Plasma Heater[J]. PHYSICS OF GASES, 2022, 7(1): 63-69. doi: 10.19527/j.cnki.2096-1642.0895
Citation: ZHU Xing-ying, CHEN Hai-qun, ZENG Hui, DONG Yong-hui, ZHOU Fa, LIU Jin-tao. Energy Conversion and Flow Characteristics of Argon Inductively Coupled Plasma Heater[J]. PHYSICS OF GASES, 2022, 7(1): 63-69. doi: 10.19527/j.cnki.2096-1642.0895

Ar介质感应耦合等离子加热器能量转化与流动特性

doi: 10.19527/j.cnki.2096-1642.0895
基金项目: 

国家自然科学基金 11802299

详细信息
    作者简介:

    朱兴营(1988-)男, 高工, 主要研究方向为低温热等离子体的研究与应用. E-mail: zhuxyhit@163.com

  • 中图分类号: O433.1;O657.31

Energy Conversion and Flow Characteristics of Argon Inductively Coupled Plasma Heater

  • 摘要: 对感应耦合等离子(inductively coupled plasma,ICP)加热器内能量转化过程与分布规律、流动特性的研究和认识能够为高频等离子加热器的设计提供理论指导,同时能够为加热器向大功率、多介质、广适用方向的发展提供支撑. 基于二维轴对称、层流流动和局部热力学平衡等假设条件,利用COMSOL对百千瓦级Ar介质柱状ICP加热器进行了磁场、流体传热和层流3个物理场的耦合计算,得到等离子加热器内的温度场、能量分布和流场,并对能量转化、热量传递和流动过程进行了分析. 同时,通过与光谱法测量得到温度进行对比,数值模拟模型建立的合理性得到验证. 研究结果发现:由于趋肤效应,高频感应耦合等离子加热器内最高温度区域对称分布在感应线圈覆盖区距外石英管一定距离处,中心区域温度略低. 加热器下游中心及出口一定范围内为高温区且温度均匀,之后向两侧温度不断降低.加热器内气流高速区在最底匝线圈及其下游的中心区域,加热器上部存在回流区.

     

  • 图  1  感应耦合等离子加热器几何结构及网格划分

    Figure  1.  Geometric construction and computational mesh of the ICP heater

    图  2  感应耦合等离子加热器内温度分布

    Figure  2.  Distribution of temperature in the ICP heater

    图  3  感应耦合等离子加热器内Joule热及电导率分布

    Figure  3.  Distribution of Joule heat and conductivity in the ICP heater

    图  4  感应耦合等离子加热器内不同横截面上的温度分布曲线

    Figure  4.  Temperature distribution at different cross sections in the ICP heater

    图  5  感应耦合等离子加热器内径线上温度分布(z=-143.5 mm)

    Figure  5.  Temperature distribution along the radial direction in the ICP heater(z=-143.5 mm)

    图  6  感应耦合等离子加热器内速度分布

    Figure  6.  Distribution of velocity in the ICP heater

    图  7  感应耦合等离子加热器内轴心线上轴向速度(vz)分布

    Figure  7.  Distribution of axial velocity(vz) along the axis in the ICP heater

    表  1  模型结构特征尺寸

    Table  1.   Size of geometric features

    R1/mm R2/mm R3/mm Rc/mm d1/mm d2/mm d3/mm Dc/mm Sc/mm L1/mm Lc/mm L0/mm
    2 21 26.5 45 5 2 3.5 11 20 73.5 93.5 250
    下载: 导出CSV
  • [1] Ito T, Ishida K, Mizuno M, et al. 110kW new high enthalpy wind tunnel heated by inductively-coupled-plasma[R]. AIAA 2003-7023, 2003.
    [2] Chazot O, Krassilchik H W, Thömel J. TPS ground testing in plasma wind tunnel for catalytic properties determination[R]. AIAA 2008-1252, 2008.
    [3] 林烈, 吴彬, 吴承康. 高温气流中材料表面催化特性研究[J]. 空气动力学学报, 2001, 19(4): 407-413. doi: 10.3969/j.issn.0258-1825.2001.04.007

    Lin L, Wu B, Wu C K. Studies on surface catalytic effect of materials in a high-temperature gas flow[J]. Acta Aerodynamic Sinica, 2001, 19(4): 407-413(in Chinese). doi: 10.3969/j.issn.0258-1825.2001.04.007
    [4] 白柳杨, 金化成, 袁方利, 等. 高频感应热等离子体在微细球形粉体材料制备中的应用[J]. 高电压技术, 2013, 39(7): 1577-1583. doi: 10.3969/j.issn.1003-6520.2013.07.005

    Bai L Y, Jin H C, Yuan F L, et al. Application of radio-frequency induction thermal plasma in fine spherical powder preparation[J]. High Voltage Engineering, 2013, 39(7): 1577-1583(in Chinese). doi: 10.3969/j.issn.1003-6520.2013.07.005
    [5] Zhao C, Ma C Y, Wen Z C, et al. Spheroidization of TC4(Ti6Al4V) alloy powders by radio frequency plasma processing[J]. Rare Metal Materials and Engineering, 2019, 48(2): 446-451.
    [6] 王建军. 射频等离子体制备球形粉末及数值模拟的研究[D]. 北京: 北京科技大学, 2015.

    Wang J J. Study on the process and numerical simulation of spherical powders prepared by radio frequency plasma[D]. Beijing: University of Science and Techno-logy Beijing, 2014(in Chinese).
    [7] Shigeta M, Watanabe T. Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas[J]. Journal of Applied Physics, 2008, 103(7): 074903. doi: 10.1063/1.2903918
    [8] 李文鹏. 低气压感应耦合放电器件研究及模型建立[D]. 上海: 复旦大学, 2009.

    Li W P. Research and modeling of low-pressure inductively coupled discharge device[D]. Shanghai: Fudan University, 2009(in Chinese).
    [9] 陈连忠, 欧东斌, 高贺, 等. 高超声速飞行器热防护电弧风洞气动加热试验技术[M]. 北京: 科学出版社, 2020.

    Chen L Z, Ou D B, Gao H, et al. Aerodynamic heating test technology of arc wind tunnel for thermal protection of hypersonic vehicle[M]. Beijing: The Science Publishing Company, 2020(in Chinese).
    [10] 陈允明, 朱清文. 高频等离子炬的设计原则与参数选择[J]. 力学与实践, 1985(5): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS198505003.htm

    Chen Y M, Zhu Q W. Design principle and parameter selection of high-frequency plasma torch[J]. Mechanics in Engineering, 1985(5): 21-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS198505003.htm
    [11] Freeman M P, Chase J D. Energy-transfer mechanism and typical operating characteristics for the thermal rf plasma generator[J]. Journal of Applied Physics, 1968, 39(1): 180-193. doi: 10.1063/1.1655729
    [12] Eckert H U. Analytical treatment of radiation and conduction losses in thermal induction plasmas[J]. Journal of Applied Physics, 1970, 41(4): 1529-1537. doi: 10.1063/1.1659068
    [13] Boulos M I. Flow and temperature fields in the fire-ball of an inductively coupled plasma[J]. IEEE Transactions on Plasma Science, 1976, 4(1): 28-39. doi: 10.1109/TPS.1976.4316928
    [14] Mostaghimi J, Boulos M I. Two-dimensional electromagnetic field effects in induction plasma modelling[J]. Plasma Chemistry and Plasma Processing, 1989, 9(1): 25-44. doi: 10.1007/BF01015825
    [15] Mostaghimi J, Boulos M I. Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure[J]. Journal of Applied Physics, 1990, 68(6): 2643-2648. doi: 10.1063/1.346489
    [16] Chen X. Modelling of a radio-frequency plasma torch including a self-consistent electromagnetic field formulation[J]. Journal of Physics D: Applied Physics, 1989, 22(2): 361-363. doi: 10.1088/0022-3727/22/2/021
    [17] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟[J]. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865

    Yu M H. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68(18): 185202(in Chinese). doi: 10.7498/aps.68.20190865
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  126
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-17
  • 修回日期:  2020-12-29
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回