主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲电子束荧光技术测量稀薄流场速度研究

陈爱国 王杰 李中华 李震乾 田颖 龙正义

陈爱国, 王杰, 李中华, 李震乾, 田颖, 龙正义. 脉冲电子束荧光技术测量稀薄流场速度研究[J]. 气体物理, 2021, 6(5): 67-71. doi: 10.19527/j.cnki.2096-1642.0892
引用本文: 陈爱国, 王杰, 李中华, 李震乾, 田颖, 龙正义. 脉冲电子束荧光技术测量稀薄流场速度研究[J]. 气体物理, 2021, 6(5): 67-71. doi: 10.19527/j.cnki.2096-1642.0892
CHEN Ai-guo, WANG Jie, LI Zhong-hua, LI Zhen-qian, TIAN Ying, LONG Zheng-yi. Velocity Measurement Investigation of Rarefied Flow Field by Pulse Electron Beam Fluorescence Technique[J]. PHYSICS OF GASES, 2021, 6(5): 67-71. doi: 10.19527/j.cnki.2096-1642.0892
Citation: CHEN Ai-guo, WANG Jie, LI Zhong-hua, LI Zhen-qian, TIAN Ying, LONG Zheng-yi. Velocity Measurement Investigation of Rarefied Flow Field by Pulse Electron Beam Fluorescence Technique[J]. PHYSICS OF GASES, 2021, 6(5): 67-71. doi: 10.19527/j.cnki.2096-1642.0892

脉冲电子束荧光技术测量稀薄流场速度研究

doi: 10.19527/j.cnki.2096-1642.0892
详细信息
    作者简介:

    陈爱国(1973-)男, 研究员, 研究高超声速低密度风洞设计与试验技术.E-mail: chenaiguo@cardc.cn

  • 中图分类号: V211.7

Velocity Measurement Investigation of Rarefied Flow Field by Pulse Electron Beam Fluorescence Technique

  • 摘要:

    脉冲电子束荧光测速技术是一种直接测量稀薄流场速度的非接触手段,以Φ0.3 m高超声速低密度风洞Ma=12型面喷管为对象,在总压2 MPa、总温650 K的状态下,测量了喷管出口150 mm截面的径向速度分布,各点的7次测量结果表明重复性偏差约为10%,最大相对不确定度为4%,中心位置的速度与Pitot管测压技术、Rayleigh散射测速技术、N-S/DSMC数值模拟获得的速度相比较,偏差为1%,表明脉冲电子束荧光技术获得流场速度的方法是可靠的.

     

  • 图  1  脉冲电子束测量速度的时序示意

    Figure  1.  Sequential sketch of velocity measurement by PEBF

    图  2  低密度风洞主体设备图

    Figure  2.  Main facilities of low density wind tunnel

    图  3  电子枪安装在风洞实验段顶部

    Figure  3.  Electron gun on the top of test section

    图  4  测试仪器布置及光路示意图

    Figure  4.  Sketch of instrument layout and optical path

    图  5  标尺在ICCD的图像

    Figure  5.  Ruler photo in the ICCD

    图  6  电子枪停止工作2 μs和6 μs时的荧光束图片

    Figure  6.  Fluorescence beam photo when the electron gun stops working for 2 μs and 6 μs

    图  7  速度分布7次重复测量结果

    Figure  7.  Seven measurement results of velocity distribution

    图  8  速度7次重复测量偏差分布

    Figure  8.  Seven measurement results of velocity deviation distribution

    图  9  径向各测点速度标准偏差分布

    Figure  9.  Standard deviation distribution of radial velocity

    图  10  径向各测点速度测量相对不确定度分布

    Figure  10.  Relative uncertainty distribution of radial velocity

    表  1  4种方法速度获得结果比较

    Table  1.   Comparison of velocity results obtained by four methods

    No. methods V/(m/s) deviation/(%)
    1 PEBF 1 161 1.00
    2 Pitot probe 1 144 -0.48
    3 Rayleigh scattering 1 140 -0.83
    4 N-S/DSMC simulation 1 153 0.30
    - mean value 1 149.5 -
    下载: 导出CSV
  • [1] 刘洪, 陈方, 励孝杰, 等. 高速复杂流动PIV技术研究实践与挑战[J]. 实验流体力学, 2016, 30(1): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201601003.htm

    Liu H, Chen F, Li X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 28-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201601003.htm
    [2] 徐惊雷. PIV技术在超及高超声速流场测量中的研究进展[J]. 力学进展, 2012, 42(1): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201008.htm

    Xu J L. The development of the PIV experimental study of the super/hypersoinc flowfield[J]. Advances in Mechanics, 2012, 42(1): 81-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201008.htm
    [3] 陈小虎, 陈方, 刘洪, 等. 高速流动PIV示踪粒子跟随性分析[J]. 气体物理, 2017, 2(4): 36-45. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c5f956ff-6c05-49f0-97a8-aceb49d8bdf7

    Chen X H, Chen F, Liu H, et al. Tracking characteris-tics of PIV tracer particles in high speed flows[J]. Physics of Gases, 2017, 2(4): 36-45(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c5f956ff-6c05-49f0-97a8-aceb49d8bdf7
    [4] 陈爱国, 陈力, 李志辉, 等. 瑞利散射测速技术在高超声速流场中应用研究[J]. 实验流体力学, 2017, 31(6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201706008.htm

    Chen A G, Chen L, Li Z H, et al. Research on application of Rayleigh scattering velocity measurement in hypersonic low density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 51-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201706008.htm
    [5] 李中华, 李志辉, 陈爱国, 等. 低密度风洞瑞利散射测速实验中纳米粒子跟随性数值分析[J]. 力学学报, 2017, 49(6): 1243-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706006.htm

    Li Z H, Li Z H, Chen A G, et al. Numerical analyzation of nano-particle following features for Rayleigh scattering velocity measurement test in low density wind tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1243-1251(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706006.htm
    [6] 叶景峰, 胡志云, 刘晶儒, 等. 分子标记速度测量技术及应用研究进展[J]. 实验流体力学, 2015, 29(3): 11-17, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201503002.htm

    Ye J F, Hu Z Y, Liu J R, et al. Development and application of molecular tagging velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 11-17, 61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201503002.htm
    [7] Mohamed A K. Electron beam velocimetry[A]//Boutier A. New Trends in Instrumentation for Hypersonic Research[M]. Dordrecht: Springer, 1993.
    [8] Mohamed A K, Pot T, Chanetz B. Diagnostics by electron beam fluorescence in hypersonics[C]. Procee-dings of 1995 International Congress on Instrumentation in Aerospace Simulation Facilities, Wright-Patterson AFB, OH, USA, USA: IEEE, 1995: 14.1-14.4.
    [9] Lutfy F M, Muntz E P. Initial experimental study of pulsed electron beam fluorescence[J]. AIAA Journal, 1996, 34(2): 478-482. http://www.onacademic.com/detail/journal_1000037440248610_8b31.html
    [10] Williams W D, Sherrouse P M, Crosswy F L, et al. AEDC development of the pulsed electron beam fluorescence(PEBF) technique for hypersonic test facility applications[R]. AIAA 2002-5155, 2002.
    [11] Lutfy F M, Muntz E P. Spectroscopic survey of gases found in hypersonic flows using pulsed electron beam fluorescence[R]. AIAA 99-2452, 1999.
    [12] Wehrmeyer J A. Pulsed electron beam spectroscopy of N2+ for temperature and density measurement[R]. AIAA 2006-833, 2006.
    [13] 叶希超. 电子束技术测量低密度风洞氮气流振动温度、转动温度及数密度[J]. 气动试验与测量控制, 1989, 3(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC198901012.htm

    Ye X C. Measurement of vibrational temperature, rotational temperature and number density in nitrogen flows of low density wind tunnel using electron beam technique[J]. Aerodynamic Experiment And Measurement Control, 1989, 3(1): 71-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC198901012.htm
    [14] 林贞彬, 朱进生, 郭大华. 电子束荧光技术用于测量高超声速飞行器流场密度[J]. 气动试验与测量控制, 1993, 7(4): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199304006.htm

    Lin Z B, Zhu J S, Guo D H. Measurement of density in hypersonic flow field by electron beam fluorescence technique[J]. Aerodynamic Experiment and Measure-ment Control, 1993, 7(4): 44-48(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199304006.htm
    [15] 王成鹏, 程克明, 王江峰, 等. 高超声速风洞流场校测与标模测力[C]. 中国第一届近代空气动力学与气动热力学会议论文集, 四川, 2006.

    Wang C P, Cheng K M, Wang J F, et al. Hypersonic wind tunnel flow field calibration and standard model force measurement[C]. 1st Modern Aerodynamics & Aerothermodynamics Conference, Sichuan, 2006(in Chinese).
    [16] 唐志共, 徐翔, 胥继斌, 等. 超声速气动力试验[M]. 北京: 国防工业出版社, 2004.

    Tang Z G, Xu X, Xu J B, et al. Hypersonic aerodynamic force test[M]. Beijing: National Defense Industry Press, 2004(in Chinese).
    [17] 恽起麟. 实验空气动力学[M]. 北京: 国防工业出版社, 1991.

    Yun Q L. Experimental aerodynamics[M]. Beijing: National Defense Industry Press, 1991(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  149
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2020-12-22
  • 刊出日期:  2021-11-17

目录

    /

    返回文章
    返回