主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交叉旋翼悬停气动性能和流场干扰

吴伟伟 马存旺 张练

吴伟伟, 马存旺, 张练. 交叉旋翼悬停气动性能和流场干扰[J]. 气体物理, 2022, 7(1): 30-37. doi: 10.19527/j.cnki.2096-1642.0878
引用本文: 吴伟伟, 马存旺, 张练. 交叉旋翼悬停气动性能和流场干扰[J]. 气体物理, 2022, 7(1): 30-37. doi: 10.19527/j.cnki.2096-1642.0878
WU Wei-wei, MA Cun-wang, ZHANG Lian. Aerodynamic Performance and Flow Interaction of the Intermeshing Rotors in Hover[J]. PHYSICS OF GASES, 2022, 7(1): 30-37. doi: 10.19527/j.cnki.2096-1642.0878
Citation: WU Wei-wei, MA Cun-wang, ZHANG Lian. Aerodynamic Performance and Flow Interaction of the Intermeshing Rotors in Hover[J]. PHYSICS OF GASES, 2022, 7(1): 30-37. doi: 10.19527/j.cnki.2096-1642.0878

交叉旋翼悬停气动性能和流场干扰

doi: 10.19527/j.cnki.2096-1642.0878
详细信息
    作者简介:

    吴伟伟(1987-)男, 硕士, 工程师, 主要研究方向为飞行器总体设计. E-mail: 726300202@qq.com

  • 中图分类号: V211.52

Aerodynamic Performance and Flow Interaction of the Intermeshing Rotors in Hover

  • 摘要: 针对交叉旋翼复杂的气动干扰问题,建立了一种适合于交叉旋翼气动分析的数值模拟方法. 该方法采用三维非定常Reynolds平均Navier-Stokes(RANS)方程来求解流场,使用动态嵌套网格方法模拟旋翼运动.使用共轴旋翼悬停实验结果验证了该方法的准确性. 利用该方法模拟了交叉旋翼在不同状态下的流场,计算了拉力和悬停效率,并与单旋翼、共轴旋翼计算结果进行对比分析,结果显示:交叉旋翼流场存在较强的涡-涡和桨-涡干扰,旋翼桨尖涡在90°/270°附近相交;交叉旋翼的拉力系数及悬停效率随旋翼中心间距增大而增大,随交叉角变化较小;在相同总距角下,交叉旋翼悬停效率高于单旋翼和共轴双旋翼3%~8%.

     

  • 图  1  共轴旋翼网格

    Figure  1.  Mesh of the coaxial rotor

    图  2  共轴旋翼CT-CQ对比

    Figure  2.  Comparison of CT-CQ for coaxial rotors

    图  3  交叉旋翼示意图

    Figure  3.  Model of the intermeshing rotor

    图  4  计算网格

    Figure  4.  Mesh of the intermeshing rotors

    图  5  拉力和扭矩系数随方位角的变化

    Figure  5.  Variations of thrust and torque coefficients with azimuth angle

    图  6  不同方位角处桨叶展向剖面载荷分布

    Figure  6.  Spanwise load distribution of the lower rotor at different azimuths

    图  7  Q等值面图

    Figure  7.  Q isosurfaces

    图  8  截面涡量云图(x=0 m)

    Figure  8.  Vorticity contours in cutting plane (x=0 m)

    图  9  旋翼桨尖涡涡核位置

    Figure  9.  Positions of rotor tip vortex core

    图  10  悬停性能随旋翼中心间距变化

    Figure  10.  Hovering performance varied with the center distance of the rotors

    图  11  x=0截面诱导速度分布

    Figure  11.  Contour of Vy in x=0 cutting plane

    图  12  y=-0.5R截面诱导速度分布

    Figure  12.  Contour of Vy in Y=-0.5R cutting plane

    图  13  交叉旋翼悬停性能随交叉角度变化

    Figure  13.  Hovering performance varied with crossing angle

    图  14  x=0截面诱导速度分布

    Figure  14.  Contour of Vy in x=0 cutting plane

    图  15  y=-0.5R截面诱导速度分布

    Figure  15.  Contour of Vy in y=-0.5R cutting plane

    图  16  不同旋翼气动性能对比

    Figure  16.  Aerodynamic performance comparison of different rotors

  • [1] 谭剑锋, 孙义鸣, 王浩文, 等. 共轴刚性双旋翼非定常气动干扰载荷分析[J]. 北京航空航天大学学报, 2018, 44(1): 50-62. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201801007.htm

    Tan J F, Sun Y M, Wang H W, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 50-62(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201801007.htm
    [2] Yoon S, Lee H C, Pulliam T H. Computational study of flow interactions in coaxial rotors[C]. International-AHS Specialists' Conference on Aeromechanics Design for Vertical Lift, Sor Fransiscc AHS, 2016: 98-108.
    [3] Lakshminarayan V K, Baeder J D. Computational investigation of small scale coaxial rotor aerodynamics in hover[R]. AIAA 2009-1069, 2009.
    [4] 杨光, 赵旭, 闫修, 等. 共轴刚性旋翼的悬停气动性能和流场干扰[J]. 航空动力学报, 2018, 33(1): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201801016.htm

    Yang G, Zhao X, Yan X, et al. Aerodynamic perfor-mance and flow interaction of the coaxial rigid rotor in hover[J]. Journal of Aerospace Power, 2018, 33(1): 116-123(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201801016.htm
    [5] 朱正, 招启军, 李鹏. 悬停状态共轴刚性双旋翼非定常流动干扰机理[J]. 航空学报, 2016, 37(2): 568-578. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602020.htm

    Zhu Z, Zhao Q J, Li P. Unsteady flow interaction mechanism of coaxial rigid rotors in hover[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 568-578(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201602020.htm
    [6] 祁浩天, 史勇杰, 徐国华, 等. 共轴刚性旋翼气动干扰及操纵特性分析[J]. 航空动力学报, 2017, 32(12): 3004-3012. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201712024.htm

    Qi H T, Shi Y J, Xu G H, et al. Analysis of aerodynamic interaction and trim characteristics of rigid coaxial rotor[J]. Journal of Aerospace Power, 2017, 32(12): 3004-3012(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201712024.htm
    [7] 吴希明, 祁浩天, 马率, 等. 共轴刚性旋翼气动干扰数值计算方法[J]. 南京航空航天大学学报, 2019, 51(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902003.htm

    Wu X M, Qi H T, Ma S, et al. Numerical method of coaxial rigid rotor aerodynamic interaction[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 147-153(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902003.htm
    [8] 叶靓, 徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J]. 空气动力学学报, 2012, 30(4): 437-442. doi: 10.3969/j.issn.0258-1825.2012.04.003

    Ye L, Xu G H. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamica Sinica, 2012, 30(4): 437-442(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.003
    [9] Feil R, Rauleder J, Hajek M. Aeromechanics analysis of a coaxial rotor system in hover and high-advance-ratio forward flight[R]. AIAA 2016-3419, 2016.
    [10] 袁明川, 刘平安, 樊枫, 等. 共轴刚性旋翼气动干扰特性风洞试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 259-262. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902020.htm

    Yuan M C, Liu P A, Fan F, et al. Wind tunnel test investigation of coaxial rigid rotor aerodynamic interac-tion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 259-262(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902020.htm
    [11] 黄明其, 王畅, 岳廷瑞, 等. 共轴刚性旋翼悬停流场的PIV风洞试验研究[J]. 南京航空航天大学学报, 2019, 51(2): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902004.htm

    Huang M Q, Wang C, Yue T R, et al. Experimental study of rigid coaxial rotor flowfield in hovering state based on PIV technique[J]. Journal of Nanjing Univer-sity of Aeronautics & Astronautics, 2019, 51(2): 154-159(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201902004.htm
    [12] 马艺敏, 陈铭, 王强, 等. 应用PIV测量缩比共轴双旋翼流场特性的研究[J]. 南京航空航天大学学报, 2015, 47(2): 220-227. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201502008.htm

    Ma Y M, Chen M, Wang Q, et al. PIV measurements of model-scale coaxial rotors flow features[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 220-227(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201502008.htm
    [13] Harrington R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor[R]. NACA-TN-2318, 1951.
    [14] Coleman C P. A survey of theoretical and experimental coaxial rotor aerodynamic research[R]. NASA-TP-3675, 1997.
    [15] 黄水林, 林永峰, 黄建萍, 等. 基于PIV技术的纵列式双旋翼尾迹特性实验研究[J]. 空气动力学报, 2012, 30(3): 334-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201203010.htm

    Huang S L, Lin Y F, Huang J P, et al. Experimental investigation on the wake characteristics of tandem twin rotors[J]. Acts Aerodynamica Sinica, 2012, 30(3): 334-339(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201203010.htm
    [16] 黄水林, 林永峰, 黄建萍, 等. 纵列式直升机双旋翼流场及性能试验[J]. 南京航空航天大学学报, 2011, 43(3): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201103017.htm

    Huang S L, Lin Y F, Huang J P, et al. Experimental investigations on flow field and performance of tandem rotors[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 363-368(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201103017.htm
    [17] Wei F S, Moore E, Gates A. An intermeshing rotor helicopter design and test[R]. AIAA 2015-0564, 2015.
    [18] Caradonna F X, Tung C F. Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA-TM-81232, 1981.
  • 加载中
图(16)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  164
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-24
  • 修回日期:  2020-12-17
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回