主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无尾升力式飞行器Weissman判据图仿真

张石玉 赵俊波 张青青 赵力宁 高清

张石玉, 赵俊波, 张青青, 赵力宁, 高清. 无尾升力式飞行器Weissman判据图仿真[J]. 气体物理, 2021, 6(6): 13-19. doi: 10.19527/j.cnki.2096-1642.0876
引用本文: 张石玉, 赵俊波, 张青青, 赵力宁, 高清. 无尾升力式飞行器Weissman判据图仿真[J]. 气体物理, 2021, 6(6): 13-19. doi: 10.19527/j.cnki.2096-1642.0876
ZHANG Shi-yu, ZHAO Jun-bo, ZHANG Qing-qing, ZHAO Li-ning, GAO Qing. Weissman Chart Analysis of Tailless Lifting Body by Flight Dynamics Simulation[J]. PHYSICS OF GASES, 2021, 6(6): 13-19. doi: 10.19527/j.cnki.2096-1642.0876
Citation: ZHANG Shi-yu, ZHAO Jun-bo, ZHANG Qing-qing, ZHAO Li-ning, GAO Qing. Weissman Chart Analysis of Tailless Lifting Body by Flight Dynamics Simulation[J]. PHYSICS OF GASES, 2021, 6(6): 13-19. doi: 10.19527/j.cnki.2096-1642.0876

无尾升力式飞行器Weissman判据图仿真

doi: 10.19527/j.cnki.2096-1642.0876
详细信息
    作者简介:

    张石玉(1984-)男, 高工, 主要研究方向为飞行动力学与实验流体力学.E-mail: zhangsy701@sina.com

    通讯作者:

    赵俊波(1979-)男, 研究员, 主要研究方向为风洞特种试验技术研究.E-mail: zjbo503@sina.com

  • 中图分类号: V19;O657.31

Weissman Chart Analysis of Tailless Lifting Body by Flight Dynamics Simulation

  • 摘要: 针对无尾升力式飞行器横航向气动耦合严重的问题,开展了Weissman判据在此类飞行器稳定性设计中的应用研究.采用调整布局的方法获得飞行器布局集,采用基于Newton理论的工程方法获得对应的气动数据集.运用飞行动力学仿真手段分析了飞行器在无控和副翼控制时的横航向飞行稳定性.结合仿真结果和Weissman判据分区规则获得飞行器Weissman判据图.研究表明,无尾升力式飞行器的关键设计点气动稳定性位于Weissman判据图的B区.文章的方法可用于再入机动飞行器的耦合稳定性设计.

     

  • 图  1  Weissman判据图

    Figure  1.  Weissman chart

    图  2  基础外形飞行器的三视图

    Figure  2.  Model of lifting body vehicle

    图  3  调整外形与基础外形对比图

    Figure  3.  Configurations of reformed vehicles

    图  4  典型外形横向稳定性导数

    Figure  4.  Lateral stability derivative of typical configurations

    图  5  典型外形航向稳定性导数

    Figure  5.  Directional stability derivative of typical configurations

    图  6  各外形偏航动态稳定性参数

    Figure  6.  Dynamic directional stability parameter

    图  7  各外形横向操纵偏离参数

    Figure  7.  Lateral control departure parameter

    图  8  增上反角布局无控条件的姿态角(2-1, α=10°)

    Figure  8.  Attitude angle of dihedral-angle-increased vehicle in uncontrolled simulation(2-1, α=10°)

    图  9  增后掠角布局无控条件的姿态角(1-1, α=10°)

    Figure  9.  Attitude angle of sweep-angle-increased-vehicle in uncontrolled simulation (1-1, α=10°)

    图  10  增后掠布局开环滚控条件的姿态角(1-1, α=5°)

    Figure  10.  Attitude angle of sweep-angle-increased vehicle in aileron-controlled simulation (1-1, α=5°)

    图  11  增上反角布局开环滚控条件的姿态角(2-1, α=5°)

    Figure  11.  Attitude angle of dihedral-angle-increased vehicle in aileron-controlled simulation (2-1, α=5°)

    图  12  无尾升力式飞行器Weissman判据图

    Figure  12.  Weissman chart of tailless lifting body

    表  1  Weissman判据图分区飞行现象

    Table  1.   Phenomenon of each region in Weissman chart

    region without control with aileron control spin susceptibility
    angle of attack divergence lateral and directional divergence angle of attack divergence roll reversal
    A × × × × none
    B × × steep spin, -50°≤θ≤-20°
    C × steep to flap spin, -25°≤θ≤-10°
    D flap spin, θ>-20°
    下载: 导出CSV

    表  2  布局汇总表

    Table  2.   Difference between reformed vehicles

    No. shape comparison with base shape
    0-0 base shape
    1-1 shape with sweep angle increased Φ:78°
    1-2 shape with sweep angle decreased Φ:62°
    2-1 shape with dihedral angle increased ΔZ:0.08 m
    2-2 shape with dihedral angle decreased ΔZ:-0.08 m
    3-1 shape with height of aircraft increased H:0.714 m
    3-2 shape with height of aircraft decreased H:0.514 m
    4-1 shape with cutting length of body side increased xside:1.1 m
    4-2 shape with cutting length of body side decreased xside:0.7 m
    5-1 shape with distance between two flaps increased ΔY:0.278 m
    5-2 shape with distance between two flaps decreased ΔY:0.078 m
    6-1 shape with flap shortened L:0.345 m
    6-2 shape with flap lengthened L:0.522 m
    下载: 导出CSV
  • [1] Weissman R. Development of design criteria for predic-ting departure characteristics and spin susceptibility of fighter-type aircraft[R]. AIAA 1972-984, 1972.
    [2] Weissman R. Criteria for predicting spin susceptibility of fighter-type aircraft[R]. ASD-TR-72-48, 1972.
    [3] Weissman R. Preliminary criteria for predicting departure characteristics/spin susceptibility of fighter-type aircraft[J]. Journal of Aircraft, 1973, 10(4): 214-219. doi: 10.2514/3.60216
    [4] Weissman R. Status of design criteria for predicting departure characteristics and spin susceptibility[R]. A74-37811, 1974.
    [5] Lowenberg M H, Kyle H L. Development of a pendulum support rig dynamic wind tunnel apparatus[R]. AIAA 2002-4879, 2002.
    [6] Johnston D E, Mitchell D G, Myers T T. Investigation of high-angle-of-attack maneuver-limiting factors, Part I: Analysis and simulation[R]. ADA101646, 1981.
    [7] Seltzer R M. Investigation of current and proposed aircraft departure susceptibility criteria with application to future fighter aircraft[R]. NADC-90048-60, 1990.
    [8] Day R E. Coupling dynamics in aircraft: a historical perspective[R]. NASA-SP-532, 1997.
    [9] Scallion W I. Aerodynamic characteristics and control effectiveness of the HL-20 lifting body configuration at Mach 10 in air[R]. NASA/TM-1999-209357, 1999.
    [10] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022

    Zhu L G, Wang Y F, Zhuang F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.022
    [11] 祝立国, 王永丰, 庄逢甘, 等. Weissman图的产生、发展及其在再入航天飞行器气动布局设计的应用[J]. 宇航学报, 2009, 30(1): 13-17. doi: 10.3873/j.issn.1000-1328.2009.00.003

    Zhu L G, Wang Y F, Zhuang F G, et al. The derivation, development of Weissman chart and applications on configuration design of reentry vehicle[J]. Journal of Astronautics, 2009, 30(1): 13-17(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.00.003
    [12] 杜涛, 陈宇, 蔡巧言, 等. 高超声速飞行器先进气动布局的设计原理研究[J]. 空气动力学学报, 2015, 33(4): 501-509. doi: 10.7638/kqdlxxb-2013.0106

    Du T, Chen Y, Cai Q Y, et al. Research on aerodynamic configuration design principle for advanced hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(4): 501-509(in Chinese). doi: 10.7638/kqdlxxb-2013.0106
    [13] 闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3): 1-10.

    Min C W. The aerodynamic configuration criteria for the lateral-directional stability of hypersonic vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(3): 1-10(in Chinese).
    [14] 陈功, 唐志共, 王文正, 等. Weissman准则在升力式再入飞行器设计中的应用[J]. 飞行力学, 2019, 37(3): 68-73.

    Chen G, Tang Z G, Wang W Z, et al. Application of Weissman criterion in the design of lift reentry vehicle[J]. Flight Dynamics, 2019, 37(3): 68-73(in Chinese).
    [15] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 354-363.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  151
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2021-05-11

目录

    /

    返回文章
    返回