主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速进气道飞行器一体化设计技术的发展

孟宇鹏 杨晖 满延进

孟宇鹏, 杨晖, 满延进. 高超声速进气道飞行器一体化设计技术的发展[J]. 气体物理, 2021, 6(4): 66-83. doi: 10.19527/j.cnki.2096-1642.0861
引用本文: 孟宇鹏, 杨晖, 满延进. 高超声速进气道飞行器一体化设计技术的发展[J]. 气体物理, 2021, 6(4): 66-83. doi: 10.19527/j.cnki.2096-1642.0861
MENG Yu-peng, YANG Hui, MAN Yan-jin. Development of Hypersonic Inlet-Vehicle Integrative Design Technology[J]. PHYSICS OF GASES, 2021, 6(4): 66-83. doi: 10.19527/j.cnki.2096-1642.0861
Citation: MENG Yu-peng, YANG Hui, MAN Yan-jin. Development of Hypersonic Inlet-Vehicle Integrative Design Technology[J]. PHYSICS OF GASES, 2021, 6(4): 66-83. doi: 10.19527/j.cnki.2096-1642.0861

高超声速进气道飞行器一体化设计技术的发展

doi: 10.19527/j.cnki.2096-1642.0861
详细信息
    作者简介:

    孟宇鹏(1976-)男, 研究员, 主要研究方向为发动机内流空气动力学.E-mail: xxshchwshry@sina.com

  • 中图分类号: V235.21+1

Development of Hypersonic Inlet-Vehicle Integrative Design Technology

  • 摘要: 对高超声速进气道与飞行器一体化设计技术和发展进行了研究,包含轴对称压缩、二维压缩、侧压以及内压缩进气道在高超声速飞行器上的典型布局设计方案.对高超声速可调进气道类型进行了概述,基于轴对称类型调节、二元平面类型调节以及三维内转调节进气道的典型案例给出了其各自的设计特点,并进一步对宽域飞行和组合动力飞行器采用的多通道可调节高超声速进气道研究进展进行了简述,最后分析了高超声速进气道设计须面对和解决的技术难题.

     

  • 图  1  “冷”计划中轴对称进气道几何构型

    Figure  1.  Axisymmetric inlet geometry of Kholod

    图  2  HRE计划中轴对称进气道发动机简图

    Figure  2.  Axisymmetric inlet geometry of HRE groud test

    图  3  Hyfly头部轴对称进气道构型

    Figure  3.  Axisymmetric inlet geometry of Hyfly

    图  4  GTX进气道布局

    Figure  4.  Inlet geometry of GTX

    图  5  GTX单独进气道简图

    Figure  5.  Single inlet of GTX

    图  6  Skylon进气道布局简图

    Figure  6.  Skylon inlet configuration

    图  7  SABRE发动机简图

    Figure  7.  SABRE engine

    图  8  Hyshot 2试飞器构型

    Figure  8.  Hyshot 2 configuration

    图  9  Hyshot 2进气道

    Figure  9.  Hyshot 2 inlet

    图  10  X-43A飞行器简图

    Figure  10.  X-43A configuration

    图  11  X-43A带前体转捩装置的进气道模型

    Figure  11.  X-43A inlet test model with forebody transition trips

    图  12  X-51A试验飞行器

    Figure  12.  X-51A test vehicle

    图  13  平面压缩和曲面乘波进气道

    Figure  13.  Plane compression inlet and curved waverider inlet

    图  14  JAPHAR乘波体进气道方案

    Figure  14.  JAPHAR waverider inlet

    图  15  弯曲激波压缩侧压进气道构型

    Figure  15.  Configuration of curved shock sidewall compression inlet

    图  16  Strutjet飞行器进气道构型

    Figure  16.  Inlet configuration of Strutjet

    图  17  模块化侧压进气道构型

    Figure  17.  Configuration of modular sidewall compression inlet

    图  18  模块化内转进气道构型

    Figure  18.  Configuration of modular inward-turning inlets

    图  19  HyCAUSE内转进气道一体化构型

    Figure  19.  Configuration of HyCAUSE vehicle with inlet

    图  20  头部内转进气道构型

    Figure  20.  Configuration of vehicle with head inward turning inlet

    图  21  腹部模块化内转进气道构型

    Figure  21.  Configuration of vehicle with 3 REST inlets installed

    图  22  腹部平面模块化REST进气道

    Figure  22.  Configuration of vehicle with REST inlets

    图  23  类咽式腹部进气道一体化乘波构型

    Figure  23.  Configuration of vehicle with Sim-Jaws inlet

    图  24  HTV-3X飞行器进气道布局

    Figure  24.  Configuration of HTV-3X with inlets

    图  25  HCV飞行器进气道

    Figure  25.  HCV vehicle with two inlets

    图  26  两侧进气道构型

    Figure  26.  Inlet configuration on both sides

    图  27  HSGTS背部进气道

    Figure  27.  HSGTS vehicle with two inlets

    图  28  HSSW弹用进气道方案[58]

    Figure  28.  HSSW missile with inlets[58]

    图  29  GTX可调进气道工作模态

    Figure  29.  Variable inlet modes of GTX

    图  30  ATREX的可调进气道

    Figure  30.  Variable inlet of ATREX

    图  31  MDR可调进气道

    Figure  31.  Variable MDR inlet

    图  32  Strujet可调进气道模式

    Figure  32.  Variable inlet modes of Strujet

    图  33  ATREX二元可调进气道

    Figure  33.  Variable geometry inlet of ATREX

    图  34  X-43二元可调进气道

    Figure  34.  Variable geometry inlet of X-43

    图  35  PROMETHEE可调进气道概念

    Figure  35.  Concept of PROMETHEE variable geometry inlet

    图  36  TBCC二元可调进气道

    Figure  36.  TBCC variable geometry inlet

    图  37  CCE-LIMX项目试验模型

    Figure  37.  CCE-LIMX inlet model

    图  38  Busemann可调进气道模型

    Figure  38.  Busemann variable inlet model

    图  39  FaCET内转可调进气道

    Figure  39.  Variable inward turning inlets of FaCET

    图  40  TriJet飞行器内转可调进气道布局

    Figure  40.  Variable inward turning inlets of TriJet vehicle

    图  41  TriJet内转可调进气道模型

    Figure  41.  Variable inlet model of TriJet

    图  42  TRRE发动机可调进气道方案[74]

    Figure  42.  Variable inlet of TRRE engine[74]

  • [1] McClinton C R, Randall T. Voland Hyper-X program status[R]. ISABE 2001-1071.
    [2] Moses P L. X-43C plans and status[R]. AIAA 2003-7084, 2003.
    [3] Novelli P, Serre L, Koschel W, et al. European efforts towards mastering hypersonic propulsion[R]. AIAA 2003-2604, 2003.
    [4] 刘桐林. 俄罗斯高超声速技术飞行试验计划(一)~(四)[J]. 飞航导弹, 2000(4): 23-30, 2000(5): 27-30, 39, 2000(6): 17-23, 2000(7): 18-23.
    [5] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program[R]. AIAA 2008-2540, 2008.
    [6] 魏毅寅, 刘鹏, 张冬青, 等. 国外高超声速技术发展及飞行试验情况分析[J]. 飞航导弹, 2010(5): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201005000.htm
    [7] Ferlemann S, McClinton C, Rock K, et al. Hyper-X Mach 7 scramjet design, ground test and flight results[R]. AIAA 2005-3322, 2005.
    [8] McClinton C, Roudakov A, Semenov V, et al. Comparative flow path analysis and design assessment of an axisymmetric hydrogen fueled scramjet flight test engine at a Mach number of 6.5[R]. AIAA 96-4571, 1996.
    [9] Voland R T, Auslender A H, Smart M K, et al. CIAM/NASA Mach 6.5 scramjet flight and ground test[R]. AIAA 99-4848, 1999.
    [10] Rodriguez C G. CFD analysis of the NASA/CIAM scram-jet[R]. AIAA 2002-4128, 2002.
    [11] Andrews E H, Mackley E A. NASA's hypersonic research engine project: a review[R]. NASA-TM-107759, 1994.
    [12] Foelsche R O, Leylegian J C, Betti A A, et al. Progress on the development of a freeflight atmospheric scramjet test technique[R]. AIAA 2005-3297, 2005.
    [13] Thomas S R, Palac D T, Trefny C J, et al. Performance evaluation of the NASA GTX RBCC flowpath[R]. NASA/TM 2001-210953, 2001.
    [14] DeBonis J R, Trefny C J, Steffen Jr C J. Inlet development for a rocket based combined cycle, single stage to orbit vehicle using computational fluid dynamics[R]. AIAA 99-2239, 1999.
    [15] Longstaff R, Bond A. The Skylon project[R]. AIAA 2011-2244, 2011.
    [16] Mehta U B, Aftosmis M J, Bowles J V, et al. Skylon aerodynamics and SABRE plumes[R]. AIAA 2015-3605, 2015.
    [17] 牛文, 李文杰. Skylon飞行器与SABRE发动机研究[J]. 飞航导弹, 2013(3): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201303022.htm
    [18] Smart M K, Hass N E, Paull A. Flight data analysis of the HyShot 2 scramjet flight experiment[J]. AIAA Journal, 2006, 44(10): 2366-2375. doi: 10.2514/1.20661
    [19] Boyce R R, Gerard S, Paull A. The HyShot scramjet flight experiment-flight data and CFD calculations com-pared[R]. AIAA 2003-7029, 2003.
    [20] Huebner L D, Rock K E, Ruf E G, et al. Hyper-X flight engine ground testing for X-43 flight risk reduction[R]. AIAA 2001-1809, 2001.
    [21] Berry S A, DiFulvio M, Kowalkowski M K. Forced boundary-layer transition on X-43(Hyper-X) in NASA LaRC 31-inch Mach 10 air tunnel[R]. NASA/TM 2000-210315, 2000.
    [22] Harsha P T, Keel L C. X-43A vehicle design and manufacture[R]. AIAA 2005-3334, 2005.
    [23] Joyce P J, Pomroy J B, Grindle L. The Hyper-X launch vehicle: challenges and design considerations for hypersonic flight testing[R]. AIAA 2005-3333, 2005.
    [24] Hank J M, Murphy J S, Mutzman R C. The X-51A scramjet engine flight demonstration program[R]. AIAA 2008-2540, 2008.
    [25] 孙强, 王健, 马会民. X-51A超燃冲压发动机的研制历程[J]. 飞航导弹, 2011(1): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201101016.htm
    [26] Borg M P, Schneider S P, Juliano T J. Effect of freestream noise on roughness-induced transition for the X-51A forebody[R]. AIAA 2008-592, 2008.
    [27] Corda S, Anderson Jr J D. Viscous optimized hypersonic waveriders designed from axisymmetric flow fields[R]. AIAA 88-0369, 1988.
    [28] 耿永兵, 刘宏, 丁海河, 等. 轴对称近似等熵压缩流场的乘波前体优化设计[J]. 推进技术, 2006, 27(5): 404-409. doi: 10.3321/j.issn:1001-4055.2006.05.005

    Geng Y B, Liu H, Ding H H, et al. Optimized design of waverider forebody derived from asymmetric near-isentropic compression flow fields[J]. Journal of Propulsion Technology, 2006, 27(5): 404-409(in Chinese). doi: 10.3321/j.issn:1001-4055.2006.05.005
    [29] Haney J W, Beaulieu W D. Waverider inlet integration issues[R]. AIAA 94-0383, 1994.
    [30] 贺旭照, 倪鸿礼. 密切曲面锥乘波体-设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm

    He X Z, Ni H L. Osculating curved cone waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201106013.htm
    [31] Haney J W, Beaulieu W D. Waverider inlet integration issues[R]. AIAA 94-0383, 1994.
    [32] 吴颖川, 贺元元, 余安远, 等. 展向截断曲面乘波压缩进气道气动布局[J]. 航空动力学报, 2013, 28(7): 1570-1575. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201307018.htm

    Wu Y C, He Y Y, Yu A Y, et al. Aerodynamic layout of spanwise truncated curved waveri-der compression inlet[J]. Journal of Aerospace Power, 2013, 28(7): 1570-1575(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201307018.htm
    [33] Eggers T, Novell P, Haupt M. Design studies of the JAPHAR experimental vehicle for dual mode ramjet demonstration[R]. AIAA 2001-1921, 2001.
    [34] Hohn O, Gülhan A. Experimental investigation on the influence of sidewall compression on the flowfield of a scramjet inlet at Mach 7[R]. AIAA 2011-2350, 2011.
    [35] 金志光. 超燃冲压发动机高超侧压式进气道设计方法研究[D]. 南京: 南京航空航天大学, 2006.
    [36] 范晓樯, 李桦, 易仕和, 等. 侧压式进气道与飞行器机体气功一体化设计及实验[J]. 推进技术, 2004, 25(6): 499-502. doi: 10.3321/j.issn:1001-4055.2004.06.005

    Fan X Q, Li H, Yi S H, et al. Experiment of aerodynamic performance for hypersonic vehicle intergrate with sidewall compression inlet[J]. Journal of Propulsion Technology, 2004, 25(6): 499-502(in Chinese). doi: 10.3321/j.issn:1001-4055.2004.06.005
    [37] 张林, 张堃元, 王磊, 等. 高超声速弯曲激波压缩侧压式进气道数值研究[J]. 航空动力学报, 2015, 30(2): 281-288. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201502004.htm

    Zhang L, Zhang K Y, Wang L, et al. Numerical investigation of hypersonic curved shock sidewall compression inlet[J]. Journal of Aerospace Power, 2015, 30(2): 281-288(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201502004.htm
    [38] Siebenhaar A, Bulman M J. The strutjet engine-the overlooked option for space launch[R]. AIAA 95-3124, 1995.
    [39] Holland S D. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10[R]. NASA-TP-3476, 1995.
    [40] Billig F S, Baurle R A, Tam C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA 99-4974, 1999.
    [41] Jacobsen L S, Tam C J, Behdadnia R, et al. Starting and operation of a streamline-traced busemann inlet at Mach 4[R]. AIAA 2006-4508, 2006.
    [42] Billig F S, Baurle R A, Tam C J, et al. Design and analysis of streamline traced hypersonic inlets[R]. AIAA 99-4974, 1999.
    [43] Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake[R]. AIAA 2005-3379, 2005.
    [44] Smart M K, White J A. Computational investigation of the Performance and back-pressure limits of a hypersonic inlet[R]. AIAA 2002-0508, 2002.
    [45] 谭慧俊, 黄河峡, 卜焕先, 等. 一种高超声速内转式进气道的内通道设计方法: 中国, CN105205220A[P]. 2015-12-30.
    [46] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学E辑: 技术科学, 2009, 39(8): 1483-1494. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200908016.htm

    You Y C, Liang D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlet[J]. Science in China(Series E: Technological Sciences), 2009, 39(8): 1483-1494(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200908016.htm
    [47] You Y C, Liang D W, Cai K. Numerical research of three-dimensional sections controllable internal waverider hypersonic inlet[R]. AIAA 2008-4708, 2008.
    [48] Xiao Y B, Yue L J, Chenr L, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition[R]. AIAA 2012-5978, 2012.
    [49] Walker S H, Rodgers F C, Esposita A L. The hypersonic collaborative Australia/united states experiment (HyCAUSE)[R]. AIAA 2005-3254, 2005.
    [50] Kothari A P. Designs of and methodology for inward or outward, and partially inward or outward turning flow hypersonic air-breathing and rocket-based-combined-cycle vehicles: US, 6164596[P]. 2000-12-26.
    [51] Gollan R J, Smart M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[R]. AIAA 2010-940, 2010.
    [52] Smart M K, Ruf E G. Free-jet testing of a REST scramjet at off-design conditions[R]. AIAA 2006-2955, 2006.
    [53] 向先宏, 王成鹏, 程克明. 基于类咽式进气道的高超声速飞行器一体化设计[J]. 宇航学报, 2012, 33(1): 19-26. doi: 10.3873/j.issn.1000-1328.2012.01.003

    Xiang X H, Wang C P, Cheng K M. Integrative design of airbreathing hypersonic vehicle based on sim-jaws inlet[J]. Journal of Astronautics, 2012, 33(1): 19-26(in Chinese). doi: 10.3873/j.issn.1000-1328.2012.01.003
    [54] Walker S, Tang M, Morris S, et al. Falcon HTV-3X-A reusable hypersonic test bed[R]. AIAA 2008-2544, 2008.
    [55] Walker S H, Rodgers F. Falcon hypersonic technology overview[R]. AIAA 2005-3253, 2005.
    [56] 南向军, 张堃元, 金志光. 乘波前体两侧高超声速内收缩进气道一体化设计[J]. 航空学报, 2012, 33(8): 1417-1426. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201208010.htm

    Nan X J, Zhang K Y, Jin Z G. Integrated design of waverider forebody and hypersonic inward turning inlets[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1417-1426(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201208010.htm
    [57] Bowcutt K G, Smith T R, Kothari A P, et al. The Hypersonic space and global transportation system: a concept for routine and affordable access to space[R]. AIAA 2011-2295, 2011.
    [58] 武卉, 牛文. 美国积极发展高超声速武器[J]. 飞航导弹, 2014(8): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201408004.htm
    [59] Kojima T, Tanatsugu N, Sato T, et al. Development study on axisymmetric air inlet for ATREX engine[R]. AIAA 2001-1895, 2001.
    [60] Sawai S, Sato T, Kobayashi H, et al. Flight test plan for ATREX engine development[R]. AIAA 2003-7027, 2003.
    [61] Kobayashi H, Tanatsugu N, Sato T, et al. Experimental study of multi-row disk inlets for hypersonic air breathing propulsion[R]. AIAA 2004-861, 2004.
    [62] Siebenhaar A, Bulman M J. Strutjet rocket-based combined-cycle engine[R]. NAS8-40891, 1999.
    [63] Taguchi H, Futamura H, Shimodaira K, et al. Design study on hypersonic engine components for TBCC space planes[R]. AIAA 2003-7006, 2003.
    [64] Huebner L D, Rock K E, Ruf E G, et al. Hyper-X flight engine ground testing for X-43 flight risk reduction[R]. AIAA 2001-1809, 2001.
    [65] Boudreau A H. Status of the air force hytech pro-gram[R]. AIAA 2003-6947, 2003.
    [66] Serre L, Falempin F. Promethee-the French military hypersonic propulsion program[R]. AIAA 2003-6950, 2003.
    [67] Albertson C W, Emami S, Trexler C A. Mach 4 test results of a dual-flowpath, turbine based combined cycle inlet[R]. AIAA 2006-8138, 2006.
    [68] Sanders B W, Weir L J. Aerodynamic design of a dual-flow Mach 7 hypersonic inlet system for a turbine-based combined-cycle hypersonic propulsion system[R]. NASA/CR 2008-215214, 2008.
    [69] Saunders J D, Stueber T J, Thomas S R, et al. Testing of the NASA Hypersonics project combined cycle engine large scale inlet mode transition experiment (CCE LlMX)[R]. NASA/TM 2012-217217, 2012.
    [70] Jacobsen L S, Tam C J, Behdadnia R, et al. Starting and operation of a streamline-traced Busemann inlet at Mach 4[R]. AIAA 2006-4508, 2006.
    [71] Walker S, Tang M, Mamplata C. TBCC propulsion for a Mach 6 hypersonic airplane[R]. AIAA 2009-7238, 2009.
    [72] Siebenhaar A, Bogar T J. Integration and vehicle performance assessment of the Aerojet "Trijet" combined-cycle engine[R]. AIAA 2009-7420, 2009.
    [73] Bulman M J, Siebenhaar A. Combined cycle propulsion: Aerojet innovations for practical hypersonic vehicles[R]. AIAA 2011-2397, 2011.
    [74] 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2): 298-305. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201702008.htm

    Wei B X, Ling W H, Gang Q, et al. Analysis of key technologies and propulsion performance research of trre engine[J]. Journal of Propulsion Technology, 2017, 38(2): 298-305(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201702008.htm
  • 加载中
图(42)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  28
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 修回日期:  2020-08-10
  • 发布日期:  2021-07-20
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回