主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SPH方法的高速列车风阻制动板制动力研究

张硕果 胡湘渝 米彩盈

张硕果, 胡湘渝, 米彩盈. 基于SPH方法的高速列车风阻制动板制动力研究[J]. 气体物理, 2021, 6(6): 59-72. doi: 10.19527/j.cnki.2096-1642.0823
引用本文: 张硕果, 胡湘渝, 米彩盈. 基于SPH方法的高速列车风阻制动板制动力研究[J]. 气体物理, 2021, 6(6): 59-72. doi: 10.19527/j.cnki.2096-1642.0823
ZHANG Shuo-guo, HU Xiang-yu, MI Cai-ying. Research on Braking Force of Aerodynamic Brake Panel of High-Speed Train Based on SPH Method[J]. PHYSICS OF GASES, 2021, 6(6): 59-72. doi: 10.19527/j.cnki.2096-1642.0823
Citation: ZHANG Shuo-guo, HU Xiang-yu, MI Cai-ying. Research on Braking Force of Aerodynamic Brake Panel of High-Speed Train Based on SPH Method[J]. PHYSICS OF GASES, 2021, 6(6): 59-72. doi: 10.19527/j.cnki.2096-1642.0823

基于SPH方法的高速列车风阻制动板制动力研究

doi: 10.19527/j.cnki.2096-1642.0823
详细信息
    作者简介:

    张硕果(1992-)男, 硕士, 主要研究方向为SPH、列车空气动力学.E-mail: shuoguozhang@sina.com

    通讯作者:

    米彩盈(1965-)男, 教授, 博士, 主要研究方向为机车车辆设计理论、结构强度可靠性.E-mail: caiyingmi@163.com

  • 中图分类号: U260.351

Research on Braking Force of Aerodynamic Brake Panel of High-Speed Train Based on SPH Method

  • 摘要: 采用光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法建立了高速列车风阻制动板流固耦合二维数值模型,实现了对风阻制动板动态开启过程的数值模拟,分析了风阻制动板的运动规律、受力分布和气动阻力变化规律.结果表明:当车速为300 km/h,最大开启角度为90°时,制动板整个开启过程的动作时间约为0.025 s,满足紧急制动时的快速响应要求;制动板开启初期,板的受力有较大突变且呈梯度分布,易弯曲变形;制动板的整个开启过程中,制动板整体受力水平逐渐提高且保持均匀分布,制动板直角边缘处受力始终较其他部位大,具有良好的增阻效果;最大制动力出现在最大开启角度为75°~85°时,而非垂直开启时,建议将最大开启角度设置为80°以获得最大制动力.

     

  • 图  1  计算域示意图

    Figure  1.  Computational domain

    图  2  气动阻力

    Figure  2.  Aerodynamic drag

    图  3  升力

    Figure  3.  Lift

    图  4  阻力板动作特性—响应时间[9]

    Figure  4.  Performance characteristic—response time[9]

    图  5  流场流速分布云图

    Figure  5.  Velocity nephogram

    图  6  流场相对压力

    Figure  6.  Relative pressure nephogram

    图  7  流体密度分布云图

    Figure  7.  Density nephogram

    图  8  风阻制动板角速度

    Figure  8.  Angular velocity of the aerodynamic brake panel

    图  9  风阻制动板速度云图

    Figure  9.  Velocity nephogram of the aerodynamic brake panel

    图  10  流场涡量云图

    Figure  10.  Vorticity nephogram

    图  11  水平锁闭状态下受力分布

    Figure  11.  Force distribution in locking status

    图  12  开启瞬时受力分布

    Figure  12.  Force distribution at the start time of rotation

    图  13  0~2°时受力分布

    Figure  13.  Force distribution from 0 to 2°

    图  14  2°~50°时受力分布

    Figure  14.  Force distributions from 2° to 50°

    图  15  50°~85°时受力分布

    Figure  15.  Force distribution from 50° to 85°

    图  16  转动骤停瞬时受力分布

    Figure  16.  Force distribution at the sudden stop moment of rotation

    图  17  稳定开启状态下受力分布

    Figure  17.  Force distribution in the stable opening status

    图  18  制动力变化规律

    Figure  18.  Variation of braking force

    图  19  阻力板动作特性—打开角度特性[9]

    Figure  19.  Performance characteristic—opening angle[9]

  • [1] 田春, 吴萌岭, 费巍巍, 等. 空气动力制动制动风翼纵向位制动力规律[J]. 同济大学学报(自然科学版), 2011, 39(5): 705-709. doi: 10.3969/j.issn.0253-374x.2011.05.014

    Tian C, Wu M L, Fei W W, et al. Rule of aerodynamics braking force in longittudinal different position of high-speed train[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 705-709(in Chinese). doi: 10.3969/j.issn.0253-374x.2011.05.014
    [2] 田春, 吴萌岭, 任利惠, 等. 空气动力制动研究初探[J]. 铁道车辆, 2009, 47(3): 10-12. doi: 10.3969/j.issn.1002-7602.2009.03.003

    Tian C, Wu M L, Ren L H, et al. Initial discussion of research in aerodynamic brake[J]. Rolling Stock, 2009, 47(3): 10-12(in Chinese). doi: 10.3969/j.issn.1002-7602.2009.03.003
    [3] 高立强, 奚鹰, 王国华, 等. 基于CFD的高速列车空气动力制动风翼板型研究[J]. 中国工程机械学报, 2015, 13(3): 236-241. doi: 10.3969/j.issn.1672-5581.2015.03.009

    Gao L Q, Xi Y, Wang G H, et al. CFD-based study on aerodynamic brake wind-panel forms for high-speed train[J]. Chinese Journal of Construction Machinery, 2015, 13(3): 236-241(in Chinese). doi: 10.3969/j.issn.1672-5581.2015.03.009
    [4] 苗秀娟, 梁习锋. 高速列车空气制动板的研究[C]. 工业空气动力学会议04论文集, 北京: 中国空气动力学学会, 2004: 137-141.
    [5] Masafumi Y. Characteristics of the aerodynamic brake of the vehicle on the Yamanashi maglev test line[J]. RIRI, 2000, 41(2): 74-78. http://ci.nii.ac.jp/naid/130004849521
    [6] Kazumasa O, Yoshimura M. Development of aerodynamic brake of maglev vehicle for emergency use[J]. Quarterly Report of Railway Technical Research Institute, 1989, 37(2): 60-65.
    [7] 周文. 日本最新研制的"姊妹"高速列车——Fastech 360S型和Fastech 360Z型高速列车[J]. 铁道知识, 2006, 4(1): 17.

    Zhou W. Japan's latest "sister" high-speed train——Fastech 360S type and Fastech 360Z high-speed train[J]. Railway Knowledge, 2006, 4(1): 17(in Chinese).
    [8] Zuo J Y, Wu M L, Tian C, et al. Aerodynamic braking device for high-speed trains: design, simulation and experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(3): 260-270. doi: 10.1177/0954409712471620
    [9] 高見創, 卢笑山, 李培署. 新干线小型分散式风阻制动装置的开发[J]. 国外铁道车辆, 2015, 52(4): 29-36. doi: 10.3969/j.issn.1002-7610.2015.04.006

    Gao J C, Lu X S, Li P S. Development of small-sized distributed aerodynamic brake for Shinkansen[J]. Foreign Rolling Stock, 2015, 52(4): 29-36(in Chinese). doi: 10.3969/j.issn.1002-7610.2015.04.006
    [10] 吉村正文. 宫崎试验线车辆空气动力制动装置的开发[J]. 黄德山, 译. 国外铁道车辆, 1996(5): 43-47.

    Yoshimura M. Development of aerodynamic brake of Miyazaki maglev test line vehicle[J]. Huang D S, trans. Foreign Rolling Stock, 1996(5): 43-47(in Chinese).
    [11] 高立强, 胡雄, 孙德建, 等. 空气动力制动前排风翼板制动力影响规律[J]. 铁道学报, 2018, 40(1): 31-37. doi: 10.3969/j.issn.1001-8360.2018.01.005

    Gao L Q, Hu X, Sun D J, et al. Influence rule of aerodynamics braking force from the front brake panel[J]. Journal of the China Railway Society, 2018, 40(1): 31-37(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.01.005
    [12] Gao L Q, Xi Y, Fu Q. Performance analysis of a new type of wind resistance brake mechanism based on Fluent and ANSYS[J]. Advanced Materials Research, 2012, 562-564: 1099-1102. doi: 10.4028/www.scientific.net/AMR.562-564.1099
    [13] Liu G R, Liu M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. Singapore: World Scienti-fic Pub Co Inc, 2003: 1-3.
    [14] 田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007: 156-159.

    Tian H Q. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007: 156-159(in Chinese).
    [15] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structure interaction by SPH[J]. Computers & Structures, 2007, 85(11/14): 879-890.
    [16] Adami S, Hu X Y, Adams N A. A transport-velocity formulation for smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2013, 241: 292-307. doi: 10.1016/j.jcp.2013.01.043
    [17] Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406. doi: 10.1006/jcph.1994.1034
    [18] Han L H, Hu X Y. SPH modeling of fluid-structure interaction[J]. Journal of Hydrodynamics, 2018, 30(1): 62-69. doi: 10.1007/s42241-018-0006-9
    [19] Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopic flows[J]. Journal of Computational Physics, 2006, 213(2): 844-861. doi: 10.1016/j.jcp.2005.09.001
    [20] Adami S, Hu X Y, Adams N A. A generalized wall boundary condition for smoothed particle hydrodyna-mics[J]. Journal of Computational Physics, 2012, 231(21): 7057-7075. doi: 10.1016/j.jcp.2012.05.005
    [21] Raflee A, Elsaesser B, Dias F. Numerical simulation of wave interaction with an oscillating wave surge conver-ter[C]. Proceeding of the ASME 201332nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes: Ocean, Offshore and Arctic Engineering Divi-sion, 2013.
    [22] Monaghan J J. Smoothed particle hydrodynamics[J]. Annual Reviews of Astronomy and Astrophysics, 1992, 30: 543-573. doi: 10.1146/annurev.aa.30.090192.002551
    [23] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow[A]//Bungartz H J, Schafer M. Fluid-Structure Interaction[M]. Berlin: Springer, 2006: 371-385.
  • 加载中
图(19)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  59
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-01-13

目录

    /

    返回文章
    返回