主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器大攻角非定常气动特性神经网络建模

王超 王方剑 王贵东 陈兰 丁志超

王超, 王方剑, 王贵东, 陈兰, 丁志超. 飞行器大攻角非定常气动特性神经网络建模[J]. 气体物理, 2020, 5(4): 11-20. doi: 10.19527/j.cnki.2096-1642.0792
引用本文: 王超, 王方剑, 王贵东, 陈兰, 丁志超. 飞行器大攻角非定常气动特性神经网络建模[J]. 气体物理, 2020, 5(4): 11-20. doi: 10.19527/j.cnki.2096-1642.0792
WANG Chao, WANG Fang-jian, WANG Gui-dong, CHEN Lan, DING Zhi-chao. Artificial Neural Network Modeling of Unsteady Aerodynamic Characteristics of Aircraft at High Attack Angle[J]. PHYSICS OF GASES, 2020, 5(4): 11-20. doi: 10.19527/j.cnki.2096-1642.0792
Citation: WANG Chao, WANG Fang-jian, WANG Gui-dong, CHEN Lan, DING Zhi-chao. Artificial Neural Network Modeling of Unsteady Aerodynamic Characteristics of Aircraft at High Attack Angle[J]. PHYSICS OF GASES, 2020, 5(4): 11-20. doi: 10.19527/j.cnki.2096-1642.0792

飞行器大攻角非定常气动特性神经网络建模

doi: 10.19527/j.cnki.2096-1642.0792
基金项目: 

国家重点研发项目 2018YFA070211

装备预研基金项目 61402060202

详细信息
    作者简介:

    王超(1986-)男, 博士, 高工, 主要研究方向为空气动力学与飞行控制.E-mail:caaawangchao@163.com

  • 中图分类号: V211.3

Artificial Neural Network Modeling of Unsteady Aerodynamic Characteristics of Aircraft at High Attack Angle

  • 摘要: 大攻角气动特性预测与气动建模是新型飞行器提升飞行性能的重要内容.以轴对称导弹简化模型为研究对象,首先采用计算流体力学方法,对70°大攻角状态的非定常气动特性进行数值模拟,计算方法基于RANS的N-S方程,湍流模型采用SA模型,对流场采用有限体积法离散,无黏项采用Roe通量差分分裂格式,黏性项采用中心差分,时间推进采用LU-SGS格式的双时间步法.飞行器运动模式采用强迫振荡的方式,对5种不同振荡频率进行了非定常数值计算,并记录每一内迭代周期最终的气动力和力矩数值.其次,以CFD预测结果作为气动建模的样本,采用动导数模型、多项式模型等传统方法,进行气动建模,并分析其有效性和精度.最后采用神经网络方法对大攻角非定常气动力进行建模,并和动导数模型、多项式模型进行精度对比.结果表明,基于神经网络的人工智能气动建模方法具有较高的精度和适应性.该方法为飞行器大攻角非定常非线性气动建模,大攻角飞行稳定性分析与控制提供理论参考.

     

  • 图  1  神经网络气动建模算法流程

    Figure  1.  Flowchart of the neural network aerodynamic modeling algorithm

    图  2  BP神经网络的结构

    Figure  2.  Structure of BP neural networks

    图  3  SDM几何外形

    Figure  3.  SDM geometry

    图  4  SDM表面网格分布

    Figure  4.  SDM surface grids

    图  5  俯仰阻尼随攻角变化曲线

    Figure  5.  Pitch damping curve with angle of attack

    图  6  滚转阻尼随攻角变化曲线

    Figure  6.  Roll damping curve with angle of attack

    图  7  飞行器外形及坐标

    Figure  7.  Aircraft configuration and coordinate

    图  8  导弹算例网格

    Figure  8.  Mesh generation for a missile

    图  9  俯仰力矩系数计算结果

    Figure  9.  Pitch moment coefficient results

    图  10  飞行器空间流场

    Figure  10.  Flow field of aircraft

    图  11  动导数和多项式建模结果

    Figure  11.  Dynamic derivatives and polynomial modeling results

    图  12  俯仰力矩建模结果对比图

    Figure  12.  Comparison of pitch moment modeling results

    表  1  动导数建模结果

    Table  1.   Aerodynamic derivative modeling results

    samples Cmz0 Cmzα Cmzωz
    1 Hz -0.993 5 -0.001 0 -1.935 6
    2 Hz -0.995 0 -0.000 9 -1.937 4
    3 Hz -1.002 9 -0.001 0 -1.953 2
    5 Hz -0.992 9 -0.000 8 -2.001 5
    10 Hz -0.993 5 -0.001 0 -1.935 6
    下载: 导出CSV

    表  2  3阶多项式建模结果

    Table  2.   3rd order polynomial modeling results

    samples Cmz0 Cmzα Cmzωz
    1 Hz -0.926 7 -0.000 5 -1.951 6
    2 Hz -0.926 0 -0.000 7 -1.953 7
    3 Hz -0.930 7 -0.001 0 -1.955 5
    5 Hz -0.961 9 -0.000 8 -2.004 5
    10 Hz -0.858 3 -0.000 6 -2.066 8
    下载: 导出CSV

    表  3  非定常气动建模精度对比

    Table  3.   Comparison of unsteady aerodynamic modeling accuracy

    samples dynamic derivatives model/% 3rd polynomial model/% neural networks model/%
    1 Hz 9.67 1.3 0.47
    2 Hz 10.02 1.17 0.49
    3 Hz 12.09 1.57 0.42
    5 Hz 12.44 1.04 0.52
    10 Hz 9.67 1.04 0.46
    all data 10.1 1.6 0.5
    下载: 导出CSV
  • [1] 汪清, 钱炜祺, 丁娣.飞机大迎角非定常气动力建模研究进展[J].航空学报, 2016, 37(8):2331-2347. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608002

    Wang Q, Qian W Q, Ding D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2331-2347(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201608002
    [2] 袁先旭, 张涵信, 谢昱飞.基于CFD方法的俯仰静、动导数数值计算[J].空气动力学学报, 2005, 23(4):458-463. doi: 10.3969/j.issn.0258-1825.2005.04.012

    Yuan X X, Zhang H X, Xie Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamica Sinica, 2005, 23(4):458-463(in Chinese). doi: 10.3969/j.issn.0258-1825.2005.04.012
    [3] 刘绪, 刘伟, 柴振霞, 等.飞行器动态稳定性参数计算方法研究进展[J].航空学报, 2016, 37(8):2348-2369. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608003

    Liu X, Liu W, Chai Z X, et al. Research progress of numerical method of dynamic stability derivatives of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2348-2369(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201608003
    [4] Wang F J. Numerical prediction of stability derivatives for complex configurations[R]. APISAT2014, 2014.
    [5] 陈农.大攻角非定常气动力建模研究[D].北京: 中国航天空气动力技术研究院, 2007.

    Chen N. High angles of attack unsteady aerodynamic modeling[D]. Beijing: China Academy of Aerospace Aerodynamics, 2007(in Chinese).
    [6] 黄达.飞行器大振幅运动非定常空气动力特性研究[D].南京: 南京航空航天大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10287-2007193997.htm

    Huang D. Unsteady aerodynamic characteristics for the aircraft oscilation in large amplitude[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10287-2007193997.htm
    [7] 蔡金狮.飞行器系统辨识[M].宇航出版社, 1995.

    Cai J S. System identification for flight vehicles[M]. China Astronautic Publishing House, 1995(in Chinese).
    [8] 王贵东.航天飞行器气动参数辨识研究[D].中国航天空气动力技术研究院, 2010.

    Wang G D. Study on aerodynamic parameter identification for aerospace vehicle[D]. China Academy of Aerospace Aerodynamics, 2010(in Chinese).
    [9] Lin G F, Lan C E. A Generalized dynamic aerodynamic coefficient model for flight dynamics application[R]. AIAA-97-3643, 1997.
    [10] Allwine D A, Strhaler J A, Lawernee D A, et al. Nonlinear modeling of unsteady aerodynamics at high angle of attack[R]. AIAA 2004-5275, 2004.
    [11] Goman M, Khrabrov A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[R]. AIAA 1992-4651, 1992.
    [12] 陈海萍, 高正红.大迎角非定常气动力数学模型研究[J].飞行力学, 2008, 26(5):10-12, 16. http://d.old.wanfangdata.com.cn/Periodical/xbgydxxb200104004

    Chen H P, Gao Z H. Large angle of attack unsteady aerodynamic modeling study[J]. Flight Dynamics 2008, 26(5):10-12, 16(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xbgydxxb200104004
    [13] 刘志涛, 孙海生, 姜裕标, 等.非线性非定常气动力的模糊逻辑建模方法[J].实验流体力学, 2005, 19(1):99-103. doi: 10.3969/j.issn.1672-9897.2005.01.020

    Liu Z T, Sun H S, Jiang Y B, et al. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):99-103(in Chinese). doi: 10.3969/j.issn.1672-9897.2005.01.020
    [14] 吴辰, 姚宏, 彭兴钊, 等.支持向量回归机在飞机气动力建模中的应用[J].计算机仿真, 2013, 30(10):128-132. doi: 10.3969/j.issn.1006-9348.2013.10.030

    Wu C, Yao H, Peng X Z, et al. Application of support vector regression for aerodynamic modeling[J]. Computer Simulation, 2013, 30(10):128-132(in Chinese). doi: 10.3969/j.issn.1006-9348.2013.10.030
    [15] Chan Y Y, Zhu Z W. Neural network modeling of aerodynamic[R]. AIAA 99-0685, 1999.
    [16] Steck J, Rokhsaz K. Some applications of artificial neural networks in modeling of nonlinear aerodynamics and flight dynamics[R]. AIAA 1997-0338, 1997.
    [17] 陈海, 钱炜祺, 何磊.基于深度学习的翼型气动系数预测[J].空气动力学学报, 2018, 36(2):294-299. doi: 10.7638/kqdlxxb-2017.0098

    Chen H, Qian W Q, He L. Aerodynamic coeffient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2):294-299(in Chinese). doi: 10.7638/kqdlxxb-2017.0098
    [18] 张瑞民, 张石玉, 赵俊波.基于神经网络的非定常气动力建模研究[J].计算机仿真, 2017, 34(2):106-110. doi: 10.3969/j.issn.1006-9348.2017.02.024

    Zhang R M, Zhang S Y, Zhao J B. The research of neural network in modeling of unsteady aerodynamics[J]. Computer Simulation, 2017, 34(2):106-110(in Chinese). doi: 10.3969/j.issn.1006-9348.2017.02.024
    [19] 龚正, 沈宏良.非定常气动力的结构自适应神经网络建模方法[J].飞行力学, 2007, 25(4):13-16. doi: 10.3969/j.issn.1002-0853.2007.04.004

    Gong Z, Shen H L. Structure self-adapting ANN method in modeling of unsteady aerodynamic[J]. Flight Dyna-mics, 2007, 25(4):13-16(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.004
    [20] 王博斌, 张伟伟, 叶正寅.基于神经网络模型的动态非线性气动力辨识方法[J].航空学报, 2010, 31(7):1379-1388. http://d.old.wanfangdata.com.cn/Periodical/hkxb201007011

    Wang B B, Zhang W W, Ye Z Y. Unsteady nonlinear aerodynamics identification based on neural network model[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1379-1388(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201007011
    [21] 史志伟, 王峥华, 李俊成.径向基神经网络在非线性非定常气动力建模中的应用研究[J].空气动力学学报, 2012, 30(1):108-119. doi: 10.3969/j.issn.0258-1825.2012.01.019

    Shi Z W, Wang Z H, Li J C. Numerical study of flow characteristics of a plunging rigid airfoil with elastic trailing-edge plate[J]. Acta Aerodynamic Sinica, 2012, 30(1):108-119(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.01.019
    [22] 付军泉, 史志伟, 陈坤, 等.基于EKF的实时循环神经网络在非定常气动力建模中的应用[J].空气动力学学报, 2018, 36(4):658-663. doi: 10.7638/kqdlxxb-2016.0131

    Fu J Q, Shi Z W, Chen K, et al. Applications of real-time recurrent neuralnetwork based on extended Kalman filter in unsteady aerodynamics modeling[J]. Acta Aero-dynamic Sinica, 2018, 36(4):658-663(in Chinese). doi: 10.7638/kqdlxxb-2016.0131
    [23] 王刚, 刘钧圣, 王琨, 等.一种亚声速导弹气动力计算方法[J].弹箭与制导学报, 2018, 38(2):65-68. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201802015

    Wang G, Liu J S, Wang K, et al. A method to predict aerodynamic characteristics for subsonic missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(2):65-68(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201802015
    [24] 吴子牛.计算流体力学基本原理[M].北京:科学出版社, 2001.

    Wu Z N. The basic principles of computational fluid mechanics[M]. Beijing:Science Press, 2001(in Chinese).
    [25] 杨云军.飞行器非稳定运动的流动物理及动力学机理[D].北京: 中国航天空气动力技术研究院, 2008.

    Yang Y J. Flow physics and dynamic mechanism of non-stable motion of aircraft[D]. Beijing: China Academic of Aerospace Aerodynamics, 2008(in Chinese).
    [26] 张瑞民, 时晓天.有翼导弹动态气动特性数值研究[J].弹箭与制导学报, 2017, 37(1):117-120, 128. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201701027

    Zhang R M, Shi X T. Research on numerical virtual flight of spinning projectile[J]. Journal of Projectiles, Roc-kets, Missiles and Guidance, 2017, 37(1):117-120, 128(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201701027
    [27] 孙海生, 张海酉, 刘志涛.大迎角非定常气动力建模方法研究[J].空气动力学报, 2011, 29(6):733-737. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201106008

    Sun H S, Zhang H Y, Liu Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6):733-737(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201106008
    [28] 史志伟, 吴根兴.大攻角非定常气动力建模与模型比较[J].空气动力学学报, 1999, 17(4):454-461.

    Shi Z W, Wu G X. Comparison between the modeling and model of the non-fixed normal gas power of the large attack angle[J]. Acta Aerodynamica Sinica, 1999, 17(4):454-461(in Chinese).
    [29] Bryan G H. Stability in aviation[M]. Lonton:Macmil-lan and Co., 1911:20-105.
    [30] 沈霖.大攻角非定常气动力建模及尾旋仿真研究[D].南京: 南京航空航天大学, 2013.

    Shen L. Research on unsteady aerodynamic models at high angle of attack and spin simulation of aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [31] 白斌, 徐敏, 祝小平, 等.正交多项式在非定常气动建模上的运用[J].飞行力学, 2013, 31(5):398-401. doi: 10.3969/j.issn.1002-0853.2013.05.004

    Bai B, Xu M, Zhu X P, et al. Nonlinear aerodynamic modeling using on orthogonal polynomials[J]. Flight Dynamics, 2013, 31(5):398-401(in Chinese). doi: 10.3969/j.issn.1002-0853.2013.05.004
    [32] 王超, 王贵东, 白鹏.飞行仿真气动力数据机器学习建模方法[J].空气动力学学报, 2019, 37(3):488-497. doi: 10.7638/kqdlxxb-2019.0024

    Wang C, Wang G D, Bai P. Method of flight test aerodynamic modeling based on machine learning[J]. Acta Aerodynamic Sinica, 2019, 37(3):488-497(in Chinese). doi: 10.7638/kqdlxxb-2019.0024
    [33] 赵忠良, 任斌, 黄叙辉. SDM标模大攻角动导数试验[J].航空学报, 1998, 19(2):137-141. http://www.cnki.com.cn/Article/CJFDTotal-HKXB802.001.htm

    Zhao Z L, Ren B, Huang X H. High angle of attack dynamic derivative experiment of standard dynamic model[J]. Acta Aerodynamica Sinica, 1998, 19(2):137-141(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB802.001.htm
    [34] 钱杏芳, 林瑞雄, 赵亚男.导弹飞行力学[M].北京:北京理工大学出版社, 2000.

    Qian X F, Lin R X, Zhao Y N. Missile flight dyna-mics[M]. Beijing:Beijing Institute of technology, 2000(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  80
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 修回日期:  2019-09-16
  • 发布日期:  2020-07-20
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回