主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器宽速域翼型多目标优化设计研究

张阳 韩忠华 柳斐 宋文萍

张阳, 韩忠华, 柳斐, 宋文萍. 高超声速飞行器宽速域翼型多目标优化设计研究[J]. 气体物理, 2019, 4(4): 26-40. doi: 10.19527/j.cnki.2096-1642.0765
引用本文: 张阳, 韩忠华, 柳斐, 宋文萍. 高超声速飞行器宽速域翼型多目标优化设计研究[J]. 气体物理, 2019, 4(4): 26-40. doi: 10.19527/j.cnki.2096-1642.0765
ZHANG Yang, HAN Zhong-hua, LIU Fei, SONG Wen-ping. Multi-Objective Aerodynamic Shape Optimization of Wide-Mach-Number-Range Airfoil[J]. PHYSICS OF GASES, 2019, 4(4): 26-40. doi: 10.19527/j.cnki.2096-1642.0765
Citation: ZHANG Yang, HAN Zhong-hua, LIU Fei, SONG Wen-ping. Multi-Objective Aerodynamic Shape Optimization of Wide-Mach-Number-Range Airfoil[J]. PHYSICS OF GASES, 2019, 4(4): 26-40. doi: 10.19527/j.cnki.2096-1642.0765

高超声速飞行器宽速域翼型多目标优化设计研究

doi: 10.19527/j.cnki.2096-1642.0765
详细信息
    作者简介:

    张阳(1996-)男, 硕士, 主要研究方向为气动与多学科优化设计.E-mail:1559695483@qq.com

    通讯作者:

    韩忠华(1977-)男, 教授, 主要研究方向为气动与多学科优化设计.E-mail:hanzh@nwpu.edu.cn

  • 中图分类号: O354.4

Multi-Objective Aerodynamic Shape Optimization of Wide-Mach-Number-Range Airfoil

  • 摘要: 高超声速飞行器正向着速域更宽、空域更广、航程更远的方向发展.因而对于现代高超声速飞行器的设计而言,除了保证高超声速的性能外,还必须兼顾满足工程需求的亚声速、跨声速、超声速特性.文章对薄翼型在不同速域下的流动机理进行分析,总结了不同速域下翼型增升减阻的设计准则,然后采用RANS方程流动求解器,结合基于Kriging模型的代理优化算法,开展了高超声速飞行器宽速域翼型的优化设计研究.首先,以NACA64A-204翼型为基准翼型,采用线性加权法进行了考虑亚、跨和高超声速气动特性的多轮次宽速域翼型优化设计研究,得到了一种宽速域性能得到改善的新翼型.然后,以优化得到的新翼型为原始翼型,开展多目标优化设计,获得了宽速域翼型两目标和三目标的Pareto最优化解集.

     

  • 图  1  约束翼型前缘半径的处理过程

    Figure  1.  Method to constrain leading edge radius

    图  2  多目标优化算法NSGA-Ⅱ流程图

    Figure  2.  Flow chart of multi-objective optimization algorithm NSGA-Ⅱ

    图  3  基于Kriging代理模型的NSGA-Ⅱ多目标优化流程图

    Figure  3.  Multi-objective optimization flow chart of NSGA-Ⅱ based on Kriging surrogate model

    图  4  RAE2822亚临界翼型计算网格示意图(417×129)

    Figure  4.  Computational grids of RAE2822 airfoil(417×129)

    图  5  RAE2822翼型计算压力分布与实验值对比

    Figure  5.  Comparison of pressure coefficient distribution of RAE2822 airfoil

    图  6  NPU-Hyper-04翼型不同迎角下的压力云图(Ma=0.3, Re=5.59×107)

    Figure  6.  Pressure contours of NPU-Hyper-04 airfoil at different angles of attack

    图  7  NPU-Hyper-04翼型不同迎角下的压力分布对比

    Figure  7.  Comparisons of pressure coefficient distributions of NPU-Hyper-04 airfoil at different angles of attack

    图  8  四边形翼型与NPU-Hyper-04翼型压力分布对比

    Figure  8.  Comparsions of pressure coefficient distributions of NPU-Hyper-04 airfoil at different angles

    图  9  不同最大厚度位置的四边形翼型示意图

    Figure  9.  Quadrilateral airfoils with different maximum thickness locations

    图  10  不同最大厚度位置的四边形翼型的阻力系数对比(Ma=1.2, Re=8.16×107, α=0°)

    Figure  10.  Comparisons of drag coefficients of quadrilateral airfoils with different maximum thickness positions (Ma=1.2, Re=8.16×107, α=0°)

    图  11  不同最大厚度位置的四边形翼型超声速压力云图对比(Ma=1.2, Re=8.16×107, α=0°)

    Figure  11.  Comparison of pressure contours at supersonic state (Ma=1.2, Re=8.16×107, α=0°)

    图  12  不同翼型高超声速状态下压力云图与压力系数分布对比

    Figure  12.  Comparisons of pressure contours and pressure coefficients for different airfoils at supersonic state

    图  13  亚声速状态计算网格示意图(361×161)

    Figure  13.  Computational grids at subsonic state(361×161)

    图  14  跨声速状态计算网格示意图(361×161)

    Figure  14.  Computational grids at transonic state(361×161)

    图  15  高超声速状态计算网格示意图(361×161)

    Figure  15.  Computational grids at hypersonic state(361×161)

    图  16  优化翼型与基准翼型及四边形翼型几何外形对比

    Figure  16.  Comparisons of geometric shape

    图  17  优化翼型与基准翼型及四边形翼型亚声速压力分布对比

    Figure  17.  Comparison of pressure coefficient distributions at subsonic state

    图  18  优化翼型与基准翼型及四边形翼型高超声速压力分布对比

    Figure  18.  Comparison of pressure coefficient distributions at hypersonic state

    图  19  两目标优化的加点历程

    Figure  19.  Process of adding new sample points by two-objective optimization

    图  20  两目标优化得到的Pareto前沿

    Figure  20.  Pareto front obtained by two-objective optimization

    图  21  翼型1与翼型4的亚声速压力分布与跨声速压力云图对比

    Figure  21.  Comparisons of pressure coefficient distributions and pressure contours of airfoil 1 and 4

    图  22  三目标优化的加点历程

    Figure  22.  Process of adding new sample points by three-objective optimization

    图  23  三目标优化得到的Pareto前沿

    Figure  23.  Pareto front obtained by three-objective optimization

    图  24  三目标Pareto解集上的典型翼型

    Figure  24.  Typical airfoils on Pareto front

    图  25  三目标Pareto解集上3个典型翼型亚声速与高超声速下的压力分布对比

    Figure  25.  Comparisons of pressure coefficient distributions

    图  26  Pareto前沿面上翼型的超声速压力云图对比(Ma=1.2, Re=8.16×107, α=0°)

    Figure  26.  Comparison of pressure contours at supersonic state

    图  27  Pareto前沿面上翼型的高超声速压力云图对比(Ma=6, Re=2.47×107, α=4°)

    Figure  27.  Comparison of pressure contours at hypersonic state

    表  1  RAE2822翼型力系数计算结果与实验值对比

    Table  1.   Comparisons of force coefficients of RAE2822 airfoil

    Cl Cd Cm
    exp 0.803 0.016 8 -0.099 0
    PMNS2D 0.802 0.017 8 -0.090 2
    下载: 导出CSV

    表  2  优化翼型与基准翼型气动特性对比

    Table  2.   Comparison of aerodynamic performance between baseline and optimized airfoil

    parameters NACA64A-204 optimized comparison
    Cl,Ma=0.3 0.850 91 0.826 16 -2.91%
    Cd,Ma=1.2 0.024 60 0.015 73 -36.06%
    (Cl/Cd)Ma=6 2.77 5.10 +84.12%
    下载: 导出CSV

    表  3  优化翼型与四边形翼型气动特性对比

    Table  3.   Comparison of aerodynamic performance between quadrilateral airfoil and optimized airfoil

    parameters quadrilateral optimized comparison
    Cl,Ma=0.3 0.790 87 0.826 16 +4.46%
    Cd,Ma=1.2 0.015 09 0.015 73 +4.24%
    (Cl/Cd)Ma=6 5.25 5.10 -2.86%
    下载: 导出CSV

    表  4  两目标Pareto解集上的典型翼型及其气动性能对比

    Table  4.   Typical airfoils on Pareto front and their aerodynamic performance

    typical airfoils on pareto front aerodynamic performance
    1 Cl, Ma=0.3=0.829 9 Cd, Ma=1.2=0.016 0 (Cl/Cd)Ma=6.0=5.06
    2 Cl, Ma=0.3=0.859 3 Cd, Ma=1.2=0.018 4 (Cl/Cd)Ma=6.0=4.90
    3 Cl, Ma=0.3=0.870 8 Cd, Ma=1.2=0.021 7 (Cl/Cd)Ma=6.0=4.89
    4 Cl, Ma=0.3=0.875 6 Cd, Ma=1.2=0.024 1 (Cl/Cd)Ma=6.0=4.79
    下载: 导出CSV
  • [1] Ueno A, Suzuki K. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance[R]. AIAA 2008-288, 2008.
    [2] 曹长强, 蔡晋生, 段焰辉.超声速翼型气动优化设计[J].航空学报, 2015, 36(12):3774-3784. http://d.old.wanfangdata.com.cn/Periodical/hkxb201512002

    Cao C Q, Cai J S, Duan Y H. Aerodynamic design optimization of supersonic airfoils[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3774-3784(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201512002
    [3] 孙祥程, 韩忠华, 柳斐, 等.高超声速飞行器宽速域翼型/机翼设计与分析[J].航空学报, 2018, 39(6):26-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201806003

    Sun X C, Han Z H, Liu F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):26-37(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201806003
    [4] 刘俊.基于代理模型的高效气动优化设计方法及应用[D].西安: 西北工业大学, 2015.

    Liu J. Efficient surrogate-based optimization method and its application in aerodynamic design[D]. Xi'an: Northwestern Polytechnical University, 2015(in Chinese).
    [5] Han Z H, He F, Song W P, et al. A preconditioned multigrid method for efficient simulation of three-dimensional compressible and incompressible flows[J]. Chinese Journal of Aeronautics, 2007, 20(4):289-296. doi: 10.1016/S1000-9361(07)60046-6
    [6] Xie F T, Song W P, Han Z H. Numerical study of high-resolution scheme based on preconditioning method[J]. Journal of Aircraft, 2009, 46(2):520-525. doi: 10.2514/1.37976
    [7] Wu M M, Han Z H, Nie H, et al. A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition[J]. Chinese Journal of Aeronautics, 2019, doi: 10.1016/j.cja.2019.03.020.
    [8] Han Z H. SurroOpt: A generic surrogate-based optimiza-tion code for aerodynamic and multidisciplinary design[C]. 30th Congress of the International Council of the Aeronautical Sciences, Daejeon, 2016.
    [9] Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows[J]. La Recherche Aérospatiale, 1994, 439(1):5-21. doi: 10.2514/6.1992-439
    [10] Kulfan B M, Bussoletti J E. ″Fundamental″ parameteric geometry representations for aircraft component shapes[R]. AIAA 2006-6948, 2006.
    [11] Kulfan B M. A universal parametric geometry representation method-″CST″[R]. AIAA 2007-62, 2007.
    [12] 韩忠华. Kriging模型及代理优化算法研究进展[J].航空学报, 2016, 37(11):3197-3225. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001

    Han Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001
    [13] Han Z H, Zhang Y, Song C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate mode-ling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346. doi: 10.2514/1.J055842
    [14] Liu J, Song W P, Han Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):925-943. doi: 10.1007/s00158-016-1546-7
    [15] Han Z H, Göertz S, Zimmermann R. Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology, 2013, 25(1):177-189. doi: 10.1016/j.ast.2012.01.006
    [16] Han Z H, Göertz S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1885-1896. doi: 10.2514/1.J051354
    [17] Han Z H, Zimmermann R, Göertz S. Alternative cokri-ging method for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1205-1210. doi: 10.2514/1.J051243
    [18] Han Z H, Zhang K S. Surrogate based optimization, Intec book, Real-World Application of Genetic Algorithm[Z]. 2012: 343-362.
    [19] Han Z H, Xu C Z, Zhang L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2019, doi: 10.1016/j.cja.2019.05.001.
    [20] Zhang K S, Han Z H, Gao Z J, et al. Constraint aggregation for large number of constraints in wing surrogate-based optimization[J]. Structural and Multidisciplinary Optimization, 2019, 29(2):421-438. doi: 10.1007/s00158-018-2074-4
    [21] Han Z H, Chen J, Zhang K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593. doi: 10.2514/1.J056661
    [22] Zhang Y, Han Z H, Zhang K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451. doi: 10.1007/s00158-018-1971-x
    [23] 韩忠华, 张瑜, 许晨舟, 等.基于代理模型的大型民机机翼气动优化设计[J].航空学报, 2019, 40(1):155-170. http://d.old.wanfangdata.com.cn/Periodical/hkxb201901012

    Han Z H, Zhang Y, Xu C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronauticaet Astronautica Sinica, 2019, 40(1):155-170(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201901012
    [24] 何衍儒, 宋保维, 曹永辉.基于Pareto最优的翼身融合水下滑翔机结构优化设计[J].水下无人系统学报, 2017, 25(3):243-249. http://d.old.wanfangdata.com.cn/Periodical/yljs201704005

    He Y R, Song B W, Cao Y H. Structure optimization design for underwater glider with blended-wing-body based on Pareto optimal solution[J]. Journal of Unmanned Undersea Systems, 2017, 25(3):243-249(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yljs201704005
    [25] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109/4235.996017
  • 加载中
图(27) / 表(4)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  42
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-18
  • 修回日期:  2019-07-01
  • 发布日期:  2019-07-20
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回