主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁流体加速和磁流体加速风洞

欧东斌 曾徽 马汉东 左光

欧东斌, 曾徽, 马汉东, 左光. 磁流体加速和磁流体加速风洞[J]. 气体物理, 2019, 4(3): 54-63. doi: 10.19527/j.cnki.2096-1642.0755
引用本文: 欧东斌, 曾徽, 马汉东, 左光. 磁流体加速和磁流体加速风洞[J]. 气体物理, 2019, 4(3): 54-63. doi: 10.19527/j.cnki.2096-1642.0755
OU Dong-bin, ZENG Hui, MA Han-dong, ZUO Guang. Magneto-Hydro-Dynamic Acceleration and Magneto-Hydro-Dynamic Wind Tunnel[J]. PHYSICS OF GASES, 2019, 4(3): 54-63. doi: 10.19527/j.cnki.2096-1642.0755
Citation: OU Dong-bin, ZENG Hui, MA Han-dong, ZUO Guang. Magneto-Hydro-Dynamic Acceleration and Magneto-Hydro-Dynamic Wind Tunnel[J]. PHYSICS OF GASES, 2019, 4(3): 54-63. doi: 10.19527/j.cnki.2096-1642.0755

磁流体加速和磁流体加速风洞

doi: 10.19527/j.cnki.2096-1642.0755
基金项目: 

国家自然科学基金 11802299

详细信息
    作者简介:

    欧东斌(1979-)男, 硕士, 研究员, 主要研究方向为气动热与热防护试验研究.E-mail:oudongbin@sina.com

    通讯作者:

    曾徽(1989-)男, 博士, 工程师, 主要研究方向为气动热试验研究与高焓光学诊断.E-mail:zenghuikeda@outlook.com

  • 中图分类号: O361.3;V211.1+2

Magneto-Hydro-Dynamic Acceleration and Magneto-Hydro-Dynamic Wind Tunnel

  • 摘要: 高超声速飞行器对于更高飞行速度的追求,给地面风洞设备模拟能力提出了新的要求,磁流体加速成为一个重要突破方向.文章介绍了国内外在磁流体加速基本原理以及磁流体加速技术应用于地面风洞试验方面的研究工作.基于磁流体(magneto-hydro-dynanic,MHD)加速的高超声速风洞设备可以模拟高超声速飞行器的试验条件,复现超高速的飞行环境,是突破超高速飞行器再入研究地面试验模拟能力的关键技术,在航空航天领域具有重要的研究意义和应用前景.

     

  • 图  1  MHD加速原理

    Figure  1.  Schematic diagram for MHD acceleration

    图  2  不同风洞设备模拟飞行包络线[5]

    Figure  2.  Facility capability boundaries and vehicle trajectories[5]

    图  3  俄罗斯TsAGI MHD加速风洞示意图

    Figure  3.  Schematic diagram of MHD wind tunnel in TsAGI

    1. arc-heater 2. mixing camber 3. metering device 4. primary supersonic nozzle 5. MHD-accelerator 6. secondary nozzle 7. test section

    图  4  AEDC高超声速风洞概念图[10]

    Figure  4.  Concept of hypersonic wind tunnel in AEDC[10]

    图  5  美国NASA MSFC试验设备示意图

    Figure  5.  MHD ground test facility in NASA MSFC

    图  6  EAST/MHD加速试验装置[25]

    Figure  6.  EAST/MHD acceleration facility[25]

    图  7  MHD加速地面试验验证[9]

    Figure  7.  Ground-based validation of MHD acceleration[9]

    图  8  基于激波风洞的磁流体加速实验系统[37]

    Figure  8.  MHD acceleration system based on shock wind tunnel [37]

    图  9  高温磁流体动力技术实验系统

    Figure  9.  High temperature acceleration system

    图  10  磁感应强度与加速率之间关系

    Figure  10.  Relationship between acceleration rate and magnetic induction intensity

    图  11  磁流体加速效果[41]

    Figure  11.  Effect of MHD acceleration[41]

    表  1  MHD加速风洞及主要参数

    Table  1.   MHD wind tunnels and operation parameters

    parameters Langley AEDC MSFC TsAGI
    heater heating approach arc-heater arc-heater arc-heater arc-heater
    working gas N2 N2 N2, air N2, air
    gas mass flowrate/(kg/s) 0.006 8 0.1 0.13 0.01~0.02
    totol pressure P0/atm 3~6 10 <20
    total temperature T0/K 4 000~6 000 4 000~4 500 3 500~4 000
    power/kW 55 600 1500 200
    seed 1%Cs 1%NaK 1%NaK 1%NaK
    MHD accelerator electrode pair 24 117 65 30~120
    magnetic field intensity/T 1.15 2 2 1.5~5
    power/kWe 200 1 000 2 000 2 000
    length/cm 30 77 96 58
    outlet size/cm2 2.54×2.54 2.5×2.5 3.6×3.6 2.5×1.15
    outlet Ma 1.6 1.6 3.5 2.0
    outlet velocity/(m/s) 6 000 3 900 3 550 6 500
    secondary nozzle outlet size/cm2 6.8×6.0 40×40
    outlet Ma 15
    outlet Velocity/(m/s) 8 000
    static temperature/K 500
    staticpressure/Pa 20~50
    operation time/s MHD off: 30
    MHD on: 1~2
    下载: 导出CSV
  • [1] Bityurin V A. A feasibility study and experimental evaluation on MHD acceleration for application to advanced propulsion and hypervelocity ground testing[R]. AIAA 2000-2301, 2000.
    [2] Lineberry J, Chapman J. MHD accelerator for hypersonic applications[R]. AIAA 1991-384, 1991.
    [3] Cambel A B. Plasma physics and magnetofluidmecha-nics[M]. NewYork:McGraw-Hill, 1963.
    [4] Nishihara M, Rich J W, Lempert W R, et al. Low-temperature M=3 flow deceleration by Lorentz force[J]. Physics of Fluids, 2006, 18(8):086101. doi: 10.1063/1.2265011
    [5] Alfyorov V I. Current state and potentialities of hypersonic MHD-gas acceleration wind tunnels[C]. Proceedings of the ICIASF'97 Record, International Congress on Instrumentation in Aerospace Simulation Facilities, Pacific Grove: IEEE, 1997: 439-449.
    [6] Bityurin V, Zeigarnik V, Kuranov A. On a perspective of MHD technology in aerospace applications[R]. AIAA 1996-2355, 1996.
    [7] Alfyorov V I, Labazkin A P, Rudakova A P, et al. Application of MHD-accelerators in hyper-velocity experimental aerodynamics[C]. Proceedings of the 11th International Conference on Magnetohydrodynamic Electrical Power Generation, Beijing: International Academic Publishers, 1992: 1308-1313.
    [8] Alferov V I, Egorov I V. Hypersonic flow in an MHD-acceleration facility and under full-scale conditions[J]. Journal of Applied Mechanics and Technical Physics, 1998, 39(2):239-248. doi: 10.1007/BF02468090
    [9] Morgan A, Barker P, Anderson R, et al. Preliminary experiments in the development of a radiatively driven hypersonic wind tunnel[R]. AIAA 1998-2498, 1998.
    [10] Simmons G, Nelson G. Overview of the NASA MARIAH project and summary of technical results[R]. AIAA 1998-2752, 1998.
    [11] Best J, Fetterhoff T, Crook R, et al. RDHWT/MARIAH Ⅱ hypersonic wind tunnel program overview and requirements[R]. AIAA 2000-2273, 2000.
    [12] Best J, Fetterhoff T, Laster M, et al. RDHWT/MARIAH Ⅱ hypersonic wind tunnel research program update[R]. AIAA 2001-1859, 2001.
    [13] Laster M L, Limbaugh C C, Jordan J L. RDHWT/MARIAH Ⅱ hypersonic wind tunnel research program[R]. Aerospace Testing Alliance (ATA) Arnold Afb Tn, 2008.
    [14] Wilson R, Laster M, Jordon J, et al. Plans and status of the RDHWT/MARIAH Ⅱ facility research program[R]. AIAA 2004-2479, 2004.
    [15] Laster M, Simmons G, Fetterhoff T, et al. A research program for the development of a true-temperature Mach 8-15 medium-scale hypersonic wind tunnel[R]. AIAA 2000-157, 2000.
    [16] Carter A F, McFarland D R, Weaver W R, et al. Design and operational characteristics of the Langley 20-megawatt plasma accelerator facility[C]. Symposium on Engineering Aspects of Magnetohydrodynamics, Pasadena: NASA, 1970.
    [17] Carter A F, Weaver W R, McFarland D R, et al. Development and initial operating characteristics of the 20 megawatt linear plasma accelerator facility[R]. NASA-TN-D-6547, 1971.
    [18] Carter A F, McFarland D R, Weaver W R, et al. Research on a linear direct-current plasma accelerator[J]. AIAA Journal, 1965, 3(6):1040-1045. doi: 10.2514/3.3051
    [19] Tempelmeyer K E, Windmueller A K, Rittenhouse L E. Development of a steady-flow J×B accelerator for wind tunnel application[R]. Technical Documentary Report NO. AEDC-TDR-64-261, 1964.
    [20] Rittenhouse L, Pigott J, Whoric J, et al. Theoretical and experimental results with a linear magnetohydrodynamic accelerator operated in the hall current neutralized mode[R]. AEDC-TR-67-150, 1967.
    [21] Durran D A, Grabowsky W R, Mirels H. Performance of a 500-k Joule MHD wind tunnel[J]. AIAA Journal, 1969, 7(10):1846-1852. doi: 10.2514/3.5471
    [22] Baughman J A, Micheletti D A, Nelson G L, et al. Magnetohydrodynamics accelerator research into advanced hypersonics (MARIAH). Part 2[R]. NASA/CR-97-206242-Pt-2, 1997.
    [23] Ring L E. General considerations of MHD acceleration for aerodynamic testing[C]. Proceedings of the AGARD Specialist's Meeting on 'Arc Heaters and MHD Acceleration for Aerodynamic Testing', Belgium: Rhode-Saint-Genese, 1964.
    [24] Litchford R, Cole J, Lineberry J, et al. Magnetohydrodynamic augmented propulsion experiment: I. performance analysis and design[R]. AIAA 2002-2184, 2002.
    [25] Bogdanoff D W, Mehta U B. Experimental demonstration of magne-to-hydro-dynamics (MHD) acceleration[R]. AIAA 2003-4285, 2003.
    [26] Bogdanoff D W, Park C, Mehta U B, et al. Improvement of scramjet performance-experimental demonstration of MHD acceleration[C]. Proceedings of the 15th International Symposium on Airbreathing Engines, Bangalore, India: NASA, 2001.
    [27] Adamovich I, Rich J, Nelson G. Feasibility study of MHD acceleration of unseeded and seeded air flows[R]. AIAA 1996-2347, 1996.
    [28] Anwari M, Takahashi S, Harada N. Numerical simulation for performance of an MHD accelerator[R]. AIAA 2004-2363, 2004.
    [29] Anwari M, Sakamoto N, Hardianto T, et al. Numerical analysis of magnetohydrodynamic accelerator performance with diagonal electrode connection[J]. Energy Conversion and Management, 2006, 47(13/14):1857-1867. http://cn.bing.com/academic/profile?id=824f2409e1a9a4a19160d8fd104fca0b&encoded=0&v=paper_preview&mkt=zh-cn
    [30] Sakamoto N, Kondo J, Harada N. Computational study of MHD accelerator[R]. AIAA 2006-2893, 2006.
    [31] Sakamoto N, Anwari M, Kondo J I, et al. Three-dimensional analyses of an MHD accelerator[R]. AIAA 2005-4922, 2005.
    [32] Harada N, Sakamoto N, Kondo J. MHD accelerator studies at nagaoka university of technology[R]. AIAA 2007-4131, 2007.
    [33] Harada N, Ikewada J, Terasaki Y. Basic studies on an MHD accelerator[R]. AIAA 2002-2175, 2002.
    [34] Kuriki K, Shimizu Y, Kunii Y. Idealized model for plasma acceleration in an MHD channel[J]. AIAA Journal, 1983, 21(3):322-326. doi: 10.2514/3.8075
    [35] 李益文, 张百灵, 李应红, 等.磁流体动力学在航空工程中的应用与展望[J].力学进展, 2017, 47(1):201713. http://d.old.wanfangdata.com.cn/Periodical/lxjz201701013

    Li Y W, Zhang B L, Li Y H, et al. Applications and prospects of magnetohydrodynamics in aeronautical engineering[J]. Advances in Mechanics, 2017, 47(1):201713(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/lxjz201701013
    [36] 张百灵, 朱涛, 李益文, 等.超声速气流磁流体加速技术的应用与发展[J].力学与实践, 2013, 35(2):13-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201302002

    Zhang B L, Zhu T, Li Y W, et al. Application and development of supersonic airflow acceleration technology based on magnetohydrodynamics[J]. Mechanics in Engineering, 2013, 35(2):13-21(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201302002
    [37] 李益文, 李应红, 张百灵, 等.基于激波风洞的超声速磁流体动力技术实验系统[J].航空学报, 2011, 32(6):1015-1024. http://d.old.wanfangdata.com.cn/Periodical/hkxb201106007

    Li Y W, Li Y H, Zhang B L, et al. Supersonic magnetohydrodynamic technical experimental system based on shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1015-1024(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201106007
    [38] 朱涛, 李应红, 张百灵, 等.磁激等离子体超声速气流的瞬态加速系统及其实验研究[J].航空学报, 2012, 33(8):1375-1383. http://d.old.wanfangdata.com.cn/Periodical/hkxb201208003

    Zhu T, Li Y H, Zhang B L, et al. Transient acceleration system of magnetoplasmadynamic supersonic airstream and its experimental research[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1375-1383(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201208003
    [39] 高岭, 李益文, 张百灵, 等.高温磁流体动力技术实验系统设计与调试[J].推进技术, 2015, 36(5):774-779. http://d.old.wanfangdata.com.cn/Periodical/tjjs201505018

    Gao L, Li Y W, Zhang B L, et al. High temperature MHD technology system design and commissioning experiments[J]. Journal of Propulsion Technology, 2015, 36(5):774-779(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201505018
    [40] 张杨, 张百灵, 李益文, 等.不同磁感应强度下的磁流体加速实验研究[J].空军工程大学学报(自然科学版), 2013, 14(3):23-27. doi: 10.3969/j.issn.1009-3516.2013.03.006

    Zhang Y, Zhang B L, Li Y W, et al. Experimental investigation on MHD acceleration under different conditions of magnetic induction[J]. Journal of Air Force Engineering University (Natural Science Edition), 2013, 14(3):23-27(in Chinese). doi: 10.3969/j.issn.1009-3516.2013.03.006
    [41] 李益文, 李应红, 张百灵, 等.超声速气流磁流体加速初步实验研究[J].力学学报, 2012, 44(2):238-244. doi: 10.3969/j.issn.0258-1825.2012.02.019

    Li Y W, Li Y H, Zhang B L, et al. Preliminary experimental investigation on supersonic flow magnetohydrodynamic(MHD) acceleration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):238-244(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.02.019
    [42] 李益文, 樊昊, 张百灵, 等.超声速非平衡电离磁流体流动控制试验和数值模拟[J].航空学报, 2017, 38(3):120368. http://d.old.wanfangdata.com.cn/Periodical/hkxb201703014

    Li Y W, Fan H, Zhang B L, et al. Test and numerical simulation on magneto-hydrodynamic flow control with nonequilibrium ionization[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120368(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201703014
    [43] 李楠.磁流体加速的机理研究和实验系统设计[D].哈尔滨: 哈尔滨工业大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014081714.htm

    Li N. Mechanism study of MHD acceleration and experimental system design[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1014081714.htm
    [44] 郑小梅.高超声速飞行器磁流体技术数值模拟研究[D].北京: 北京航空航天大学, 2010.

    Zheng X M. Numerical simulation of magnetohydrodynamic technology for hypersonic vehicle[D]. Beijing: Beihang Univeristy, 2010(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  12
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 修回日期:  2019-04-05
  • 发布日期:  2019-05-20
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回