主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于N-S方程的支撑机翼高亚声速气动外型设计

廖振荣 郭兆电 何大全 耿延升

廖振荣, 郭兆电, 何大全, 耿延升. 基于N-S方程的支撑机翼高亚声速气动外型设计[J]. 气体物理, 2019, 4(3): 42-53. doi: 10.19527/j.cnki.2096-1642.0753
引用本文: 廖振荣, 郭兆电, 何大全, 耿延升. 基于N-S方程的支撑机翼高亚声速气动外型设计[J]. 气体物理, 2019, 4(3): 42-53. doi: 10.19527/j.cnki.2096-1642.0753
LIAO Zhen-rong, GUO Zhao-dian, HE Da-quan, GENG Yan-sheng. Aerodynamic Design of Strut Braced Wing Under High Subsonic Condition Based on N-S Equations[J]. PHYSICS OF GASES, 2019, 4(3): 42-53. doi: 10.19527/j.cnki.2096-1642.0753
Citation: LIAO Zhen-rong, GUO Zhao-dian, HE Da-quan, GENG Yan-sheng. Aerodynamic Design of Strut Braced Wing Under High Subsonic Condition Based on N-S Equations[J]. PHYSICS OF GASES, 2019, 4(3): 42-53. doi: 10.19527/j.cnki.2096-1642.0753

基于N-S方程的支撑机翼高亚声速气动外型设计

doi: 10.19527/j.cnki.2096-1642.0753
详细信息
    作者简介:

    廖振荣(1982-)男, 高工, 主要研究方向为飞行器气动布局设计, 计算流体力学.E-mail:liaozhenrong@sina.com

    通讯作者:

    郭兆电(1962-)男, 研究员, 主要研究方向为飞行器设计.E-mail:guozhaodian@sina.cn

  • 中图分类号: V211+.3

Aerodynamic Design of Strut Braced Wing Under High Subsonic Condition Based on N-S Equations

  • 摘要: 相对常规悬臂梁布局飞机,支撑机翼飞机允许有更大的展弦比、更薄的机翼及较小的后掠角,从而可以减小诱导阻力、波阻,并增加层流范围,是未来飞机的一个可供选择方案.文章基于N-S方程对高亚声速支撑机翼构型进行了气动外型设计,在巡航Mach数为0.7,设计升力系数为0.6的条件下,支撑机翼构型相对无支撑构型升阻比仅减小6.3%,而初始无支撑翼身组合体构型相较常规悬臂梁翼身组合体构型最大升阻比提高了约35%,设计结果表明支撑机翼构型是可明显提高飞行性能的未来高亚声速飞机的一种新型外型.文章也对支撑外型、位置参数及机翼内翼下翼面外型修型对支撑机翼构型的干扰影响进行了研究,研究结果表明:支撑上翼面外型、支撑弦长、相对厚度、展向位置、扭转角分布及机翼下翼面外型对支撑机翼构型气动影响较大.

     

  • 图  1  支撑机翼布局示意图

    Figure  1.  Strut braced wing concept

    图  2  支撑机翼布局设计外型图

    Figure  2.  Strut braced wing design configuration

    图  3  压力系数对比曲线

    Figure  3.  Comparisons of surface pressure distributions

    图  4  支撑翼型

    Figure  4.  Strut airfoils

    图  5  支撑与机翼形成的二维喷管Mach数云图

    Figure  5.  2D Mach number distributions between strut and main wing

    图  6  不同展向位置示意图

    Figure  6.  Comparisons of different spanwise positions

    图  7  不同展向位置升阻比对比图

    Figure  7.  Comparisons of lift-to-drag ratio among different spanwise positions

    图  8  不同支撑高度位置示意图

    Figure  8.  Comparisons of different strut heights

    图  9  不同支撑高度升阻比对比图

    Figure  9.  Comparisons of lift-to-drag ratio among different strut heights

    图  10  支撑高度5%c局部通道Mach数云图

    Figure  10.  Mach number distribution of strut with a height of 5%c

    图  11  支撑高度10%c局部通道Mach数云图

    Figure  11.  Mach number distribution of strut with a height of 10%c

    图  12  不同支撑后掠角示意图

    Figure  12.  Comparisons of different sweep angles

    图  13  不同支撑后掠角升阻比对比图

    Figure  13.  Comparisons of lift-to-drag ratio among different sweep angles

    图  14  不同支撑扭转角示意图

    Figure  14.  Comparisons of different twist angles

    图  15  不同支撑扭转角升阻比对比图

    Figure  15.  Comparisons of lift-to-drag ratio among different twist angles

    图  16  不同支撑相对厚度示意图

    Figure  16.  Comparisons of different strut thicknesses

    图  17  不同支撑相对厚度升阻比对比图

    Figure  17.  Comparisons of lift-to-drag ratio among different strut thicknesses

    图  18  不同支撑弦长示意图

    Figure  18.  Comparisons of different strut chord lengths

    图  19  不同支撑弦长升阻比对比图

    Figure  19.  Comparisons of lift-to-drag ratio among different strut chord lengths

    图  20  翼根处翼型修型

    Figure  20.  Airfoil optimization of the main wing at root

    图  21  支撑与机翼连接处翼型修型

    Figure  21.  Airfoil optimization of the main wing at the conjunction point

    图  22  有无支撑升阻比对比

    Figure  22.  Comparison of lift-to-drag ratio between configurations with and without strut

    图  23  超声速等值面

    Figure  23.  Supersonic region on main wing

    图  24  机翼及支撑压力云图

    Figure  24.  Pressure distributions on main wing and strut

    图  25  展向升力、扭转角及压差阻力分布

    Figure  25.  Spanwise distributions of lift, twist and pressure drag

    图  26  机翼及支撑截面压力分布

    Figure  26.  Pressure distributions on different wing and strut cross sections

    图  27  竖直支撑截面压力分布

    Figure  27.  Pressure distributions on vertical segment of strut cross sections

    表  1  机翼外型参数

    Table  1.   Geometric characteristics of the wing

    characteristics values
    aspect ratio 17
    twist/(°) -2
    wingsweep/(°) 16
    taper ratio 0.25
    root t/c 15%
    tip t/c 11%
    下载: 导出CSV

    表  2  设计状态

    Table  2.   Design Condition

    parameters values
    Ma 0.7
    CL 0.6
    altitude/m 10 000
    下载: 导出CSV

    表  3  机翼及支撑外型参数

    Table  3.   Geometric characteristics of the wing and strut

    characteristics raduos
    wing aspect ratio 17
    wing twist/(°) -2
    wing sweep/(°) 16
    wing taper ratio 0.25
    wing root t/c 14%
    wing-strut junction t/c 10%
    wing tip t/c 11%
    strut chord 25%c
    strut twist/(°) -4
    strut sweep/(°) 16
    strut taper ratio 1
    strut root t/c 11%
    strut tip t/c 11%
    wing-strut junction(half-span) 50%
    下载: 导出CSV
  • [1] Kenway G K, Martins J R. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration[J]. Journal of Aircraft, 2014, 51(1):144-160. doi: 10.2514/1.C032150
    [2] Kennedy G J, Kenway G W, Martins J R. High aspect ratio wing design: optimal aerostructural tradeoffs for the next generation of materials[R]. AIAA 2014-0596, 2014.
    [3] Secco N R, Martins J R. RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes[R]. AIAA 2018-0413, 2018.
    [4] Gur O, Bhatia M, Schetz J A, et al. Design optimization of a truss-braced-wing transonic transport aircraft[J]. Journal of Aircraft, 2010, 47(6):1907-1917. doi: 10.2514/1.47546
    [5] Chakraborty I, Gross J R, Nam T, et al. Analysis of the effect of cruise speed on fuel efficiency and cost for a truss-braced wing concept[R]. AIAA 2014-2424, 2014.
    [6] Ivaldi D, Secco N R, Chen S, et al. Aerodynamic shape optimization of a truss-braced-wing aircraft[R]. AIAA 2015-3436, 2015.
    [7] Bradley M K, Droney C K, Allen T J. Subsonic ultra green aircraft research. Phase Ⅱ-volume I; truss braced wing design exploration[R]. NASA/CR-2015-218704/VOL1, 2015.
    [8] Ting E, Reynolds K, Nguyen N. Flight performance analysis of the truss-braced wing aircraft[R]. AIAA 2014-2597, 2014.
    [9] Allen T J, Sexton B W, Scott M J. SUGAR truss braced wing full scale aeroelastic analysis and dynamically scaled wind tunnel model development[R]. AIAA 2015-1171, 2015.
    [10] Scott R C, Allen T J, Funk C J, et al. Aeroservoelastic wind-tunnel test of the sugar truss braced wing wind-tunnel model[R]. AIAA 2015-1172, 2015.
    [11] Gipson L. NASA aeronautics budget proposes return of X-Planes[EB/OL]. (2016-02-19). http://www.nasa.gov/feature/nasa-aeronautics-budget-proposes-return-of-x-planes.
    [12] Carrier G, Atinault O, Dequand S, et al. Investigation of a strut-braced wing configuration for future commercial transport[C]. Proceedings of the 28th International Congress of the Aeronautical Sciences, Brisbane: ICAS, 2012.
    [13] Turriziani R V, Lovell W A, Martin G L, et al. Preliminary design characteristics of a subsonic business jet concept employing an aspect ratio 25 strut braced wing[R]. NASA CR-159361, 1980.
    [14] Grasmeyer J M. Multidisciplinary design optimization of a transonic strut-braced wing aircraft[R]. AIAA 1999-0010, 1999.
    [15] Gundlach J F, Tétrault P A, Gern F H, et al. Conce-ptual design studies of a strut-braced wing transonic tran-sport[J]. Journal of Aircraft, 2000, 37(6):976-983. doi: 10.2514/2.2724
    [16] Gur O, Mason W H, Schetz J A. Full configuration drag estimation[R]. AIAA 2009-4109, 2009.
    [17] Gur O, Schetz J A, Mason W H. Aerodynamic considerations in the design of truss-braced wing aircraft[R]. AIAA 2010-4813, 2010.
    [18] Grasmeyer J M. A discrete vortex method for calculating the minimum induced drag and optimum load distribution for aircraft configurations with noncoplanar surfaces[C]. Proceedings of the VPIAOE-242, AOE Department, Blacksburg: Virginia Polytechnic Institute and State University, 1997.
    [19] Zhang K S, Bakar A, Ji P B, et al. Multidisciplinary optimization of truss-braced wing layout[C]. Proceedings of the 29th Congress of the international of the Aeronautical Sciences, St. Petersburg: ICAS, 2014.
    [20] Gur O, Bhatia M, Schetz J A, et al. Design optimization of a truss-braced-wing transonic transport aircraft[J]. Journal of Aircraft, 2010, 47(6):1907-1917. doi: 10.2514/1.47546
    [21] Gagnon H, Zingg D W. High-fidelity aerodynamic shape optimization of unconventional aircraft through axial defor-mation[R]. AIAA 2014-0908, 2014.
    [22] Ivaldi D, Secco N R, Chen S, et al. Aerodynamic shape optimization of a truss-braced-wing aircraft[R]. AIAA 2015-3436, 2015.
    [23] Meadows N A, Schetz J A, Kapania R K, et al. Multidisciplinary design optimization of medium-range transo-nic truss-braced wing transport aircraft[J]. Journal of Aircraft, 2012, 49(6):1844-1856. doi: 10.2514/1.C031695
    [24] Hwang J T, Kenway G K, Martins J R. Geometry and structural modeling for high-fidelity aircraft conce-ptual design optimization[R]. AIAA 2014-2041, 2014.
    [25] 廖振荣, 郭兆电, 邓一菊, 等.航空高性能CFD计算软件CCFD研发与测试[C].第十七界全国计算流体力学会议, 杭州: 中国空气动力学会, 2017.

    Liao Z R, Guo Z D, Deng Y J, et al. Development and test of high performance CFD computing software CCFD[C]. Proceedings of the CARS, Hangzhou: CARS, 2017(in Chinese).
  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  160
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 修回日期:  2019-05-03
  • 发布日期:  2019-05-20
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回