主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜爆轰发动机流动机理分析

马凯夫 张子健 刘云峰 姜宗林

马凯夫, 张子健, 刘云峰, 姜宗林. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750
引用本文: 马凯夫, 张子健, 刘云峰, 姜宗林. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750
MA Kai-fu, ZHANG Zi-jian, LIU Yun-feng, JIANG Zong-lin. Flow Mechanism of Oblique Detonation Engines[J]. PHYSICS OF GASES, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750
Citation: MA Kai-fu, ZHANG Zi-jian, LIU Yun-feng, JIANG Zong-lin. Flow Mechanism of Oblique Detonation Engines[J]. PHYSICS OF GASES, 2019, 4(3): 1-10. doi: 10.19527/j.cnki.2096-1642.0750

斜爆轰发动机流动机理分析

doi: 10.19527/j.cnki.2096-1642.0750
基金项目: 

国家自然科学基金 11672312

国家自然科学基金 11532014

详细信息
    作者简介:

    马凯夫(1993-)男, 博士, 研究方向为斜爆轰发动机、分子动力学.E-mail:makaifu@imech.ac.cn

    通讯作者:

    刘云峰(1971-)男, 高工, 研究方向为激波与爆轰物理、激波风洞.E-mail:liuyunfeng@imech.ac.cn

  • 中图分类号: V235.21

Flow Mechanism of Oblique Detonation Engines

  • 摘要: 为了研究高Mach数超燃冲压发动机和斜爆轰发动机的内流场燃烧流动机理,首先用CJ爆轰理论对超燃冲压发动机的内流场特性进行了理论分析,给出了燃烧室流场的气动规律,理论分析结果与现有实验结果吻合得非常好.其次,根据理论分析结果,提出了高Mach数超燃冲压发动机和斜爆轰发动机的气动设计原则.最后,根据提出的气动设计原则,设计了高Mach数斜爆轰发动机,飞行Mach数为9,对斜激波诱导燃烧机理开展了二维数值模拟研究.数值模拟结果表明,在高Mach数下,斜爆轰发动机燃烧室内可以得到稳定的燃烧流场.

     

  • 图  1  超燃冲压发动机物理模型

    Figure  1.  Physical model of scramjets

    图  2  CJ爆轰发动机物理模型

    Figure  2.  Physical model of CJ detonation engine

    图  3  斜爆轰发动机示意图

    Figure  3.  Configuration of the oblique detonation engine

    图  4  斜爆轰发动机计算域

    Figure  4.  Computational domain of the oblique detonation engine

    图  5  HyShot Ⅱ超燃冲压发动机模型及尺寸(单位:mm) [27]

    Figure  5.  Details of the HyShot Ⅱ geometry (unit :mm) [27]

    图  6  Hyshot Ⅱ数值模拟结果与实验结果比较

    Figure  6.  Comparisons of CFD results of HyShot Ⅱ with DLR experimental results

    图  7  斜爆轰发动机的压力云图和OH质量分数云图

    Figure  7.  Contours of pressure and mass fraction of OH with Φ=1.0

    图  8  不同时刻燃烧室温度图

    Figure  8.  Temperature contours of the combustor at different instants

    图  9  燃烧室内的温度云图和H2O质量分数等值线:实线为流线; 虚线为H2O质量分数

    Figure  9.  Temperature contours in the combustor and mass fraction of H2O :numbers and isolines

    图  10  沿流线的无量纲参数分布

    Figure  10.  Profiles of different parameters along a stream line

    图  11  基元反应模型的点火延迟时间

    Figure  11.  Ignition delay time of the detailed chemical model

    表  1  HEG激波风洞实验条件[12]

    Table  1.   Averaged free-stream conditions of HEG shock tunnel[12]

    p/Pa T/K pt2/kPa qt2/(MW/m2) Ma Rem/(1/m)
    1 988 266 142 4.38 7.37 3.71×106
    下载: 导出CSV
  • [1] Ferri A. Review of problems in application of supersonic combustion[J]. The Aeronautical Journal, 1964, 68(645):575-597. http://cn.bing.com/academic/profile?id=1fb98842b736140b5d79cd3e935f446d&encoded=0&v=paper_preview&mkt=zh-cn
    [2] Ferri A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 1968, 5(1):3-10. doi: 10.2514/3.43899
    [3] Curran E T. Scramjet engines:the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6):1138-1148. doi: 10.2514/2.5875
    [4] 俞刚, 范学军.超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5):449-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001

    Yu G, Fan X J. Supersonic combustion and hypersonic propulsion[J]. Advances in Mechanics, 2013, 43(5):449-471(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001
    [5] 王钰涵, 王江峰, 李龙飞.进口条件对超燃冲压发动机氢气燃烧流场特性的影响分析[J].气体物理, 2018, 3(3):48-58. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9409c30f-4439-4135-a09e-0ebab130d42a

    Wang Y H, Wang J F, Li L F. Numerical analysis of hydrogen jet combustion flows in scramjet under different inlet conditions[J]. Physics of Gases, 2018, 3(3):48-58(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9409c30f-4439-4135-a09e-0ebab130d42a
    [6] 叶坤, 叶正寅, 武洁, 等. DMD和POD对超燃冲压发动机凹腔流动的稳定性分析[J].气体物理, 2016, 1(5):39-51. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=113b62e8-67b8-487b-84b8-1f056bc92441

    Ye K, Ye Z Y, Wu J, et al. Stability analysis of scramjet open cavity flow base on POD and DMD method[J]. Physics of Gases, 2016, 1(5):39-51(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=113b62e8-67b8-487b-84b8-1f056bc92441
    [7] 乐嘉陵, 田野, 杨顺华, 等.脉冲燃烧风洞中空气节流对煤油燃料超燃冲压发动机火焰稳定影响研究[J].推进技术, 2018, 39(10):2161-2170. http://d.old.wanfangdata.com.cn/Periodical/tjjs201810001

    Le J L, Tian Y, Yang S H, et al. Study on flame stabilization in a kerosene fueled scramjet combustor with air throttling in a pulse combustion wind tunnel[J]. Journal of Propulsion Technology, 2018, 39(10):2161-2170(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201810001
    [8] Shen H D, Liu Y B, Chen B Y. Control-relevant modeling and performance limitation analysis for flexible air-breathing hypersonic vehicles[J]. Aerospace Science and Technology, 2018, 76:340-349. doi: 10.1016/j.ast.2018.02.016
    [9] Clark R J, Shrestha S B. A review of numerical simulation and modeling of combustion in scramjets[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(5):958-980. doi: 10.1177/0954410014541249
    [10] Mitani T, Tani K, Miyajima H. Flow choking by drag and combustion in supersonic engine testing[J]. Journal of Propulsion and Power, 2007, 23(6):1177-1184. doi: 10.2514/1.30264
    [11] Laurence S J, Lieber D, Schramm J M, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. part I:shock-tunnel experiments[J]. Combustion and Flame, 2015, 162(4):921-931. doi: 10.1016/j.combustflame.2014.09.016
    [12] Hannemann K, Karl S, Schramm J M, et al. Methodo-logy of a combined ground based testing and numerical modelling analysis of supersonic combustion flow paths[J]. Shock Waves, 2010, 20(5):353-366. doi: 10.1007/s00193-010-0269-8
    [13] Oh J Y, Ma F H, Hsieh S Y, et al. Interactions between shock and acoustic waves in a supersonic inlet diffuser[J]. Journal of Propulsion and Power, 2005, 21(3):486-495. doi: 10.2514/1.9671
    [14] Tsien H S, Beilock M. Heat source in a uniform flow[J]. Journal of Aeronautical Sciences, 1949, 16(12):756-757. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_611157fc15a22619f3d441257b991455
    [15] Birzer C H, Doolan C J. Quasi-one-dimensional model of hydrogen-fueled scramjet combustors[J]. Journal of Propulsion and Power, 2009, 25(6):1220-1225. doi: 10.2514/1.43716
    [16] O'Brien T F, Starkey R P, Lewis M J. Quasi-one-dimensional high-speed engine model with finite-rate chemistry[J]. Journal of Propulsion and Power, 2001, 17(6):1366-1374. doi: 10.2514/2.5889
    [17] Vanyai T, Bricalli M, Brieschenk S, et al. Scramjet performance for ideal combustion processes[J]. Aerospace Science and Technology, 2018, 75:215-226. doi: 10.1016/j.ast.2017.12.021
    [18] Curran E T, Heiser W H, Pratt D T. Fluid phenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28:323-360. doi: 10.1146/annurev.fl.28.010196.001543
    [19] Laurence S J, Karl S, Schramm J M, et al. Transient fluid-combustion phenomena in a model scramjet[J]. Journal of Fluid Mechanics, 2013, 722:85-120. doi: 10.1017/jfm.2013.56
    [20] O'Byrne S, Doolan M, Olsen S R, et al. Analysis of transient thermal choking processes in a model scramjet engine[J]. Journal of Propulsion and Power, 2000, 16(5):808-814. doi: 10.2514/2.5645
    [21] Liu Y F, Shen H, Zhang D L, et al. Theoretical analysis on deflagration-to-detonation transition[J]. Chinese Phy-sics B, 2018, 27(8):084703. doi: 10.1088/1674-1056/27/8/084703
    [22] 沈欢, 张子健, 刘云峰, 等.超燃冲压发动机推进性能理论分析[J].气体物理, 2018, 3(1):12-19. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2ad9edce-c2ad-4faf-b6c0-a61902fa07c2

    Shen H, Zhang Z J, Liu Y F, et al. Analysis on the propulsion performance of scramjet engine[J]. Physics of Gases, 2018, 3(1):12-19(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2ad9edce-c2ad-4faf-b6c0-a61902fa07c2
    [23] Chan J, Sislian J P, Alexander D. Numerically simulated comparative performance of a scramjet and Shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5):1125-1134. doi: 10.2514/1.48144
    [24] Alexander D C, Sislian J P. Computational study of the propulsive characteristics of a Shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1):34-44. doi: 10.2514/1.29951
    [25] 张少杰, 蔡晓东, 陈伟强, 等.超声速气流中的爆震推进理论与研究进展[J].气体物理, 2018, 3(2):27-38. http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a7df5540-cb8e-4ff0-9ce4-259ff64c28aa

    Zhang S J, Cai X D, Chen W Q, et al. Theory and research progress of detonation propulsion in supersonic flow[J]. Physics of Gases, 2018, 3(2):27-38(in Chinese). http://qtwl.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a7df5540-cb8e-4ff0-9ce4-259ff64c28aa
    [26] Gerlinger P, Möbus H, Brüggemann D. An implicit multigrid method for turbulent combustion[J]. Journal of Computational Physics, 2001, 167(2):247-276. doi: 10.1006/jcph.2000.6671
    [27] Chapuis M, Fedina E, Fureby C, et al. A computational study of the HyShot Ⅱ combustor performance[J]. Proceedings of the Combustion Institute, 2013, 34(2):2101-2109. doi: 10.1016/j.proci.2012.07.014
    [28] Burke M P, Chaos M, Ju Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7):444-474. doi: 10.1002/kin.20603
    [29] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  81
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-12
  • 修回日期:  2019-05-07
  • 发布日期:  2019-05-20
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回