主管部门: 中国航天科技集团有限公司
主办单位: 中国航天空气动力技术研究院
中国宇航学会
中国宇航出版有限责任公司

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续旋转爆震的推进技术研究进展

谢峤峰 王兵 董琨

谢峤峰, 王兵, 董琨. 基于连续旋转爆震的推进技术研究进展[J]. 气体物理, 2020, 5(1): 1-23. doi: 10.19527/j.cnki.2096-1642.0744
引用本文: 谢峤峰, 王兵, 董琨. 基于连续旋转爆震的推进技术研究进展[J]. 气体物理, 2020, 5(1): 1-23. doi: 10.19527/j.cnki.2096-1642.0744
XIE Qiao-feng, WANG Bing, DONG Kun. Progress in Research of Rotating Detonation Propulsion[J]. PHYSICS OF GASES, 2020, 5(1): 1-23. doi: 10.19527/j.cnki.2096-1642.0744
Citation: XIE Qiao-feng, WANG Bing, DONG Kun. Progress in Research of Rotating Detonation Propulsion[J]. PHYSICS OF GASES, 2020, 5(1): 1-23. doi: 10.19527/j.cnki.2096-1642.0744

基于连续旋转爆震的推进技术研究进展

doi: 10.19527/j.cnki.2096-1642.0744
基金项目: 

中国博士后科学基金第64批面上项目 2018M640140

中国博士后科学基金第12批特别资助 2019T120100

详细信息
    作者简介:

    谢峤峰(1986-)  男, 助理研究员, 主要研究方向为基础爆震及爆震推进技术.E-mail:qiaofengxie@mail.tsinghua.edu.cn

    通讯作者:

    王兵(1977-)  男, 特聘研究员, 主要研究方向为高速两相流、燃烧不稳定性、爆震、爆震发动机.E-mail:wbing@tsinghua.edu.cn

  • 中图分类号: O381

Progress in Research of Rotating Detonation Propulsion

  • 摘要:

    基于爆震燃烧的推进技术是未来空间技术的重要发展趋势,特别是可实现结构简单化设计和高热力学效率.针对火箭式连续旋转爆震发动机、吸气式爆震发动机的实验测试和数值仿真,文章综述了其国内外研究进展,分别总结了不同燃料、燃烧室结构、喷注方式以及工作方式等对连续旋转爆震波的传播规律和发动机的特性影响规律.虽然上述探索性研究得到了诸多有益的结论,但是由于连续旋转爆震燃烧技术涉及的流动、物理化学过程十分复杂,对旋转爆震燃烧的机理研究仍然有待进一步深入开展.

     

  • 图  1  连续旋转爆震发动机结构示意图[1]

    Figure  1.  Schematic diagram of rotating detonation engine[1]

    图  2  Voitsekhovskii团队的旋转爆震实验[2]

    Figure  2.  Experimental facility of the rotating detonation engine at Voitsekhovskii's lab[2]

    图  3  不同几何构型的连续旋转爆震燃烧室结构示意图[3]

    Figure  3.  Schematic diagram of rotating detonation engine with different geometric configurations[3]

    图  4  连续旋转爆震燃烧室不同喷注形式示意图[3]

    Figure  4.  Schematic diagram of different injection forms of rotaing detonation combustor[3]

    图  5  连续旋转爆震发动机与火箭发动机的比冲和推力性能对比[10]

    Figure  5.  Comparison of specific impulse and thrust between rotating detonation engine and rocket engine[10]

    图  6  406 mm直径的连续旋转爆震燃烧室实验台[12]

    Figure  6.  Rotating detonation combustor with a diameter of 406 mm[12]

    图  7  连续旋转爆震燃烧室数值计算结果[12] (t=7.65 ms)

    Figure  7.  Numerical results of the rotating detonation combustor[12] (t=7.65 ms)

    图  8  连续旋转爆震冲压发动机实验台及压力测试结果[14]

    Figure  8.  Rotating detonation ramjet and pressure test result[14]

    图  9  爆震液体火箭发动机实验台[15]

    Figure  9.  Liquid rotating detonation rocket engine[15]

    图  10  密西根大学连续旋转爆震发动机实验装置图[16]

    Figure  10.  Experimental setup of the rotating detonation engine at University of Michigan[16]

    图  11  美国空军技术研究所的连续旋转爆震发动机实验装置图[22]

    Figure  11.  Experimental facility of the rotating detonation engine at the Air Force Institute of Technical [22]

    图  12  美国空军技术研究所的连续旋转爆震涡轮发动机实验装置图[23]

    Figure  12.  Experimental facility of the rotating detonation turbine engine at the Air Force Institute of technical[23]

    图  13  连续旋转爆震发动机实验装置及不同尾喷管示意图[24]

    Figure  13.  Experimental facility of the rotating detonation engine with different nozzles[24]

    图  14  美国空军研究实验室6 in发动机和热传感器示意图[32]

    Figure  14.  Schematic diagrams of the rotating detonation engine with a 6 in diameter and the thermal sensor at Force Research Laboratory[32]

    图  15  可视化连续旋转爆震燃烧室及OH基化学发光实验[34]

    Figure  15.  Visualized rotating detonation combustor and OH chemiluminescence experiment[34]

    图  16  美国空军研究实验室直径10 in连续旋转爆震发动机[25]

    Figure  16.  Experimental facility of the rotating detonation engine with a 10 in diameter at Air Force Research Laboratory[25]

    图  17  美国能源部技术实验室连续旋转爆震发动机实验台[43]

    Figure  17.  Experimental facility of the rotating detonation engine at the U.S. Department of Energy Technology Laboratory[43]

    图  18  辛辛那提大学连续旋转爆震发动机实验台[44]

    Figure  18.  Experimental facility of the rotating detonation engine at the University of Cincinnati[44]

    图  19  德克萨斯大学阿灵顿分校连续旋转爆震发动机实验台[49-50]

    Figure  19.  Experimental facility of the rotating detonation engine at the University of Texas at Arlington[49-50]

    图  20  普渡大学连续旋转爆震燃烧室二维实验台[51]

    Figure  20.  Experimental facility of a 2D rotating detonation combustor at the Purdue University[51]

    图  21  普渡大学连续旋转爆震发动机实验台[51]

    Figure  21.  Experimental facility of the rotating detonation engine at the Purdue University[51]

    图  22  法国MBDA公司的连续旋转爆震发动机实验台[54]

    Figure  22.  Experimental facility of the rotating detonation engine at the MBDA[54]

    图  23  华沙理工大学连续旋转爆震发动机实验台[61]

    Figure  23.  Experimental facility of the rotating detonation engine at the Warsaw University of Technology[61]

    图  24  华沙理工大学连续旋转爆震发动机实验台[65]

    Figure  24.  Experimental facility of the rotating detonation engine at the Warsaw University of Technology[65]

    图  25  波兰航空研究院新型连续旋转爆震发动机实验台[66]

    Figure  25.  Experimental facility of the rotating detonation engine at the Polish Aviation Institute[66]

    图  26  波兰航空研究院煤油/空气连续旋转爆震发动机实验台[67]

    Figure  26.  Experimental facility of the kerosene/air rotating detonation engine at the Polish Aviation Institute[67]

    图  27  连续旋转爆震波流场特征数值仿真结果[75]

    Figure  27.  Numerical simulation of the flow field in rotating detonation engine[75]

    图  28  连续旋转爆震发动机收缩扩张喷管的Mach数分布[79]

    Figure  28.  Distribution of Mach number of expansion nozzle in a rotating detonation engine[79]

    图  29  连续旋转爆震火箭轨道车实验系统[80]

    Figure  29.  Test system of the rotating detonation rocket railcar[80]

    图  30  日本S520探空火箭[80]

    Figure  30.  S520 sounding rocket of Japan[80]

    图  31  釜山国立大学的数值仿真结果及实验设计[84]

    Figure  31.  Numerical simulation and experimental design at Busan National University[84]

    图  32  国防科技大学设计的连续旋转爆震发动机[89]

    Figure  32.  Experimental facility of the rotating detonation engines at the National University of Defense Technology[89]

    图  33  国防科技大学的吸气式连续旋转爆震发动机及自由射流实验台[94]

    Figure  33.  Experimental facility of the air breathing rotating detonation engine and free jet test bench at the National University of Defense Technology[94]

    图  34  南京理工大学的连续旋转爆震发动机实验台[101]

    Figure  34.  Experimental facility of the rotating detonation engine at Nanjing University of Science and Technology[101]

    图  35  北京大学的连续旋转爆震发动机实验台[116]

    Figure  35.  Experimental facility of the rotating detonation combustor at Beijing University[116]

    图  36  清华大学的连续旋转爆震发动机实验台[126]

    Figure  36.  Experimental facility of the rotating detonation combustor at Tsinghua University[126]

    表  1  Aerojet Rocketdyne公司连续旋转爆震发动机研究[42]

    Table  1.   Research on rotating detonation engine at Aerojet Rocketdyne co., ltd[42]

    year project test time photo
    2010 proof of principle 28
    2010 experimental study on detonation engine 163
    2011 plasma ignition 21
    2012 determination of design parameters 198
    2013 experimental study on liquid fuel 79
    2013 exhaust emission measurement 35
    2014 experimental study on detonation turbojet engine 13
    2015 detonation turbojet engine modeling 0
    下载: 导出CSV
  • [1] Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [2] Voitsekhovskii B V. Statsionarnaya dyetonatsiya[J]. Dok-lady Akademii Nauk SSSR, 1959, 129(6):1254-1256.
    [3] Bykovskii F A, Zhdan S A. Continuous detonation engine[M]. Doklady Akademii Nauk, 2013.
    [4] Bykovskii F A, Mitrofanov V V, Vedernikov E F. Continuous detonation combustion of fuel-air mixtures[J]. Combustion, Explosion and Shock Waves, 1997, 33(3):344-353. doi: 10.1007/BF02671875
    [5] Bykovskii F A, Mitrofanov V V. A continuous spin detonation in liquid fuel sprays[A]//Roy G, Frolov S, Netzer D, et al. Control of Detonation Processes[M]. Moscow: Elex-KM, 2000: 209-211.
    [6] Bykovskii F A, Vedernikov E F. Continuous detonation of a subsonic flow of a propellant[J]. Combustion, Explo-sion and Shock Waves, 2003, 39(3):323-334. doi: 10.1023/A:1023800521344
    [7] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonation in annular combustors[J]. Combustion, Explosion and Shock Waves, 2005, 41(4):449-459. doi: 10.1007/s10573-005-0055-6
    [8] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion, Explosion and Shock Waves, 2006, 42(4):463-471. doi: 10.1007/s10573-006-0076-9
    [9] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. doi: 10.2514/1.17656
    [10] Frolov S M, Aksenov V S, Ivanov V S. Experimental proof of Zel'dovich cycle efficiency gain over cycle with constant pressure combustion for hydrogen-oxygen fuel mixture[J]. International Journal of Hydrogen Energy, 2015, 40(21):6970-6975. doi: 10.1016/j.ijhydene.2015.03.128
    [11] Фролов С М, Аксенов В С, Гусев П А, et al. Экс-периментальные исследования стендовых образцов малоразмерных ракетных двигателей с непрерывно-детонационными камерами сгорания[J]. Горение и взрыв, 2015, 8(1):151-163. Frolov S M, Aksenov V S, Gusev P A, Ivanov V S, Medvedev S N, et al. Experimental studies of small samples bench engine with a continuously-detonation combustors[J]. Combustion and Explosion, 2015, 8(1):151-163. http://combex.org/journal/gvz2015/IHF8-1-mini-19e.pdf
    [12] Frolov S M, Aksenov V S, Ivanov V S, et al. Large-scale hydrogen-air continuous detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(3):1616-1623. doi: 10.1016/j.ijhydene.2014.11.112
    [13] Frolov S M, Aksenov V S, Dubrovskii A V, et al. Energy efficiency of a continuous-detonation combustion chamber[J]. Combustion, Explosion, and Shock Waves, 2015, 51(2):232-245. doi: 10.1134/S0010508215020070
    [14] Frolov S M, Zvegintsev V I, Ivanov V S, et al. Demonstrator of continuous-detonation air-breathing ramjet:Wind tunnel data[J]. Doklady Physical Chemistry, 2017, 474(1):75-79. http://cn.bing.com/academic/profile?id=8cb618a0c0a765c50592ba5af3b25a20&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Россия первой успешно испытала детонационный жидкостный ракетный двигатель нового поколения на экологически чистом топливе[EB/OL]. 2016, https://www.gazeta.ru/science/news/2016/08/26/n_9042995.shtml. The first successful test launch of a new generation of green propellant liquid fuel rocket engine in Russia, 2016, from http://fpi.gov.ru/press/news/20160826.
    [16] Nicholls J A. The feasibility of a rotating detonation wave rocket motor[R]. Quarterly Progress Report No.2, 1962.
    [17] Russo R M, King P I, Schauer F R, et al. Characterization of pressure rise across a continuous detonation engine[R]. AIAA 2011-6046, 2011.
    [18] Russo R M. Operational characteristics of a rotating detonation engine using hydrogen and air[M]. Air Force Inst of Tech Wright-Patterson Afb oh Dept of Aeronautics and Astronautics, 2011.
    [19] Shank J C, King P I, Karnesky J, et al. Development and testing of a modular rotating detonation engine[R]. AIAA 2012-0120, 2012: 120.
    [20] Shank J C. Development and testing of a rotating detonation engine run on hydrogen and air[D]. Ohio: Wright-Patterson Air Force Base, Air Force Institute of Technology, 2012.
    [21] Thomas L M, Schauer F R, Hoke J L, et al. Buildup and operation of a rotating detonation engine[R]. AIAA 2011-602, 2011: 602.
    [22] Tellefsen J R, King P I, Schauer F R, et al. Analysis of an RDE with convergent nozzle in preparation for turbine integration[R]. AIAA 2012-0773, 2012: 773.
    [23] Tellefsen J R. Build up and operation of an axial turbine driven by a rotary detonation engine[M]. Air Force Inst of Tech Wright-Patterson Afb oh Graduate School of Engineering and Management, 2012.
    [24] Fotia M L, Kaemming T A, Hoke J, et al. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow[R]. AIAA 2015-0631, 2015.
    [25] Fotia M. Update on air breathing detonation driven propulsion research[C]. Proceedings of the International Workshop on Detonation for Propulsion, 2015.
    [26] Fotia M L, Hoke J L, Schauer F. Experimental performance scaling of rotating detonation engines operated on gaseous fuels[J]. Journal of Propulsion and Power, 2017, 33(5):1187-1196. doi: 10.2514/1.B36213
    [27] Fotia M L, Kaemming T A, Hoke J L, et al. Thermodynamics modelling and the operation of rotating detonation engines at elevated inlet temperatures[C]. Proceedings of the 2016 International Workshop on Detonation for Propulsion, Singapore: National University of Singapore, 2016.
    [28] Theuerkauf S W, Schauer F, Anthony R, et al. Average and instantaneous heat release to the walls of an RDE[R]. AIAA 2014-1503, 2014: 1503.
    [29] Theuerkauf S W, Schauer F R, Anthony R, et al. Experimental characterization of high-frequency heat flux in a rotating detonation engine[R]. AIAA 2015-1603, 2015: 1603.
    [30] Theuerkauf S W, Schauer F R, Anthony R J, et al. Comparison of simulated and measured instantaneous heat flux in a rotating detonation engine[R]. AIAA 2016-1200, 2016: 1200.
    [31] Braun J, Sousa J, Paniagua G. Assessment of the boundary layer within a Rotating Detonation Combustor[R]. AIAIA 2016-4557, 2016: 4557.
    [32] Meyer S J, Polanka M D, Schauer F R, et al. Experimental characterization of heat transfer coefficients in a rotating detonation engine[R]. AIAA 2017-1285, 2017: 1285.
    [33] Rankin B A, Richardson D R, Caswell A W, et al. Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine[R]. AIAA 2015-1604, 2015: 1604.
    [34] Rankin B A, Richardson D R, Caswell A W, et al. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine[J]. Combustion and Flame, 2017, 176:12-22. doi: 10.1016/j.combustflame.2016.09.020
    [35] Kailasanath K. The rotating detonation-wave engine concept: a brief status report[R]. AIAA 2011-580, 2011: 580.
    [36] Kailasanath K. Recent developments in the research on rotating-detonation-wave engines[R]. AIAA 2017-0784, 2017.
    [37] Schwer D A, Kailasanath K. Numerical investigation of rotating detonation engines[R]. AIAA 2010-6880, 2010: 6880.
    [38] Schwer D A, Kailasanath K. Effect of inlet on fill region and performance of rotating detonation engines[R]. AIAA 2011-6044, 2011: 6044.
    [39] Schwer D A, Kailasanath K. Numerical study of the effects of engine size n rotating detonation engines[R]. AIAA 2011-581, 2011: 581.
    [40] Schwer D A, Kailasanath K. Feedback into mixture plenums in rotating detonation engines[R]. AIAA 2012-0617, 2012: 617.
    [41] Schwer D A, Kailasanath K. Characterizing NOx emissions for air-breathing rotating detonation engines[R]. AIAA 2016-4779, 2016: 4779.
    [42] Lynch E D, Claflin S, Stout J. Rotating detonation combustion for gas turbines -modeling and system synthesis to exceed 65% efficiency goal[C]. Proceedings of 2015 University Turbine Systems Research Workshop, Atlanta, Georgia: Aerojet Rocketdyne, 2015: 23983.
    [43] Ferguson D. Overview of pressure gain combustion studies at NETL[C]. Proceedings of the University Turbine Systems Research Workshop, 2016: 2301.
    [44] Anand V, George A S, Driscoll R, et al. Charac-terization of instabilities in a rotating detonation combus-tor[J]. International Journal of Hydrogen Energy, 2015, 40(46):16649-16659. doi: 10.1016/j.ijhydene.2015.09.046
    [45] Anand V, George A S, Driscoll R, et al. Investigation of rotating detonation combustor operation with H2-air mixtures[J]. International Journal of Hydrogen Energy, 2016, 41(2):1281-1292. doi: 10.1016/j.ijhydene.2015.11.041
    [46] Anand V, George A S, Driscoll R, et al. Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science, 2016, 70:408-416. doi: 10.1016/j.expthermflusci.2015.10.007
    [47] Driscoll R, Aghasi P, St George A, et al. Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine[J]. International Journal of Hydrogen Energy, 2016, 41(9):5162-5175. doi: 10.1016/j.ijhydene.2016.01.116
    [48] Suchocki J A, Yu S T J, Hoke J L, et al. Rotating detonation engine operation[R]. AIAA 2012-0119, 2012: 119.
    [49] Braun E M, Dunn N L, Lu F K. Testing of a continuous detonation wave engine with swirled injection[R]. AIAA 2010-146, 2010: 146.
    [50] Braun E M, Balcazar T S, Wilson D R, et al. Experimental study of a high-frequency fluidic valve fuel injector[J]. Journal of Propulsion and Power, 2012, 28(5):1121-1125. doi: 10.2514/1.B34442
    [51] Heister S, Slabaugh C. Advancing pressure gain combustion in terrestrial turbine systems[C]. Proceedings of the University Turbine Systems Research Workshop, 2016: 1004.
    [52] Daniau E, Falempin F, Getin N, et al. Design of a continuous detonation wave engine for space application[R]. AIAA 2006-4794, 2006: 4794.
    [53] Falempin F, Daniau E, Getin N, et al. Toward a continuous detonation wave rocket engine demonstrator[R]. AIAA 2006-7956, 2006: 7956.
    [54] Falempin F, Daniau E. A contribution to the development of actual continuous detonation wave engine[R]. AIAA 2008-2679, 2008: 2679.
    [55] Falempin F, Le Naour B. R&T effort on pulsed and continuous detonation wave engines[R]. AIAA 2009-7284, 2009: 7284.
    [56] Falempin F, Le Naour B, Miquel F. Recent experimental results obtained on continuous detonation wave engine[R]. AIAA 2011-2235, 2011: 2235.
    [57] Eude Y, Davidenko D M, Gökalp I, et al. Use of the adaptive mesh refinement for 3D simulations of a CDWRE (continuous detonation wave rocket engine)[R]. AIAA 2011-2236, 2011: 2236.
    [58] Davidenko D M, Eude Y, Falempin F. Numerical study on the annular nozzle optimization for rocket application[R]. AIAA 2009-7390, 2009: 7390.
    [59] Wolanski P, Kindracki J. Research on continuous rotating detonation and its applications to jet propulsion[J]. ISABE, 2009, 1313:2009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210492833
    [60] Kindracki J, Kobiera A, Wolański P, et al. Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures[J]. Progress in Propulsion Physics, 2011, 2:555-582. https://www.eucass-proceedings.eu/articles/eucass/abs/2012/01/eucass2p555/eucass2p555.html
    [61] Kindracki J, Wolański P, Gut Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mix-tures[J]. Shock Waves, 2011, 21(2):75-84. doi: 10.1007/s00193-011-0298-y
    [62] Kindracki J. Experimental studies of kerosene injection into a model of a detonation chamber[J]. Journal of Power of Technologies, 2012, 92(2):80-89. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_81489f90784cae7e3aca90c55201d3b2
    [63] Kindracki J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J]. Aerospace Science and Technology, 2015, 43:445-453. doi: 10.1016/j.ast.2015.04.006
    [64] Tobita A, Fujiwara T, Wolanski P. Detonation engine and flying object provided therewith: US, US2005284127[P]. 2010-08-31.
    [65] Wolański P. Application of the continuous rotating detonation to gas turbine[J]. Applied Mechanics and Materials, 2015, 782:3-12. doi: 10.4028/www.scientific.net/AMM.782.3
    [66] Kawalec M, Wolanski P, et al. Influence of mixture supply parameters on stability and performance of rotating detonation in methane-oxygen mixture[C]. Proceedings of the International Workshop on Detonation for Propul-sion, 2016.
    [67] Kawalec M, Wolanski P. Influence of mixture on performance of rotating detonation rocket engine[C]. Proceedings of the International Constant-Volume and Detonation Combustion Workshop, 2016.
    [68] Folusiak M, Kobiera A, Wolański P. Rotating detonation engine simulations in-house code-REFloPS[J]. Prace Instytutu Lotnictwa, 2010, (5):3-23.
    [69] Folusiak M, Swiderski K, Wolanski P, et al. Graphics processors as a tool for rotating detonation simulations[C]. Proceedings of the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, Irvine: University of California, 2011.
    [70] Folusiak M, Swiderski K, Kindracki J, et al. Assessment of numerical simulations of RDE combustion chamber[C]. Proceedings of the 24th ICDERS, Taipei, Taiwan: ICDERS, 2013.
    [71] Folusiak M, Swiderski K, Lukasik B, et al. Improving accuracy and performance of Rotating Detonation Engine simulations[C]. Proceedings of the 5th European Conference for AeroSpace Sciences, Munich, Germany, 2013.
    [72] Folusiak M, Swiderski K, Kobiera A, et al. Three-dimensional numerical simulations of the combustion chamber of the rotating detonation engine[J]. Journal of KONES, 2013, 20(1):83-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214739920
    [73] Swiderski K, Folusiak M, Kobiera A, et al. Numerical tools for three dimensional simulations of the rotating detonation engine in complex geometries[J]. Journal of KONES, 2013, 20(1):329-336. http://cn.bing.com/academic/profile?id=c20f85a0ec297ae5844231afdf231c22&encoded=0&v=paper_preview&mkt=zh-cn
    [74] Swiderski K, Folusiak M, Lukasik B, et al. Three dimensional numerical study of the propulsion system based on rotating detonation using Adaptive Mesh Refinement[C]. Proceedings of the 24th ICDERS. Taipei, Taiwan: ICDERS, 2013.
    [75] Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa27ae22f2663f5dd5e44de017b39454
    [76] Hayashi A K, Kimura Y, Yamada T, et al. Sensitivity analysis of rotating detonation engine with a detailed reaction model[R]. AIAA 2009-0633, 2009: 633.
    [77] Tsuboi N, Watanabe Y, Kojima T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture[J]. Proceedings of the Combustion Institute, 2015, 35(2):2005-2013. doi: 10.1016/j.proci.2014.09.010
    [78] Yamada T, Hayashi A K, Tsuboi N, et al. Numerical analysis of threshold of limit detonation in rotating detonation engine[R]. AIAA 2010-153, 2010: 153.
    [79] Tsuboi N, Hayashi K. Simulation on rotating detonation engine: effects of converging-diverging nozzle, non-uniform injection, and hydrocarbon-fueled detonation[C]. Proceedings of the International Workshop on Detonation for Propulsion, 2016.
    [80] Kasahara J, Kato Y, Ishihara K et al. Research and development of rotating detonation engine for upper-stage kick motor system[C]. Proceedings of the International Workshop on Detonation for Propulsion, 2016.
    [81] Yi T H, Turangan C, Lou J, et al. A three-dimensional numerical study of rotational detonation in an annular chamber[R]. AIAA 2009-634, 2009: 634.
    [82] Yi T H, Lou J, Turangan C, et al. Effect of nozzle shapes on the performance of continuously-rotating detonation engine[R]. AIAA 2010-152, 2010: 152.
    [83] Yi T H, Lou J, Turangan C, et al. Propulsive perfor-mance of a continuously rotating detonation engine[J]. Journal of Propulsion and Power, 2011, 27(1):171-181. doi: 10.2514/1.46686
    [84] Choi J Y. Research progress of detonation studies for propulsion in PNU[C]. Proceedings of the International Workshop on Detonation for Propulsion, 2016.
    [85] 刘世杰, 林志勇, 孙明波, 等.旋转爆震波发动机二维数值模拟[J].推进技术, 2010, 31(5):634-640. Liu S J, Lin Z Y, Sun M B, et al. Two-dimensional numerical simulation of rotating detonation wave engine[J]. Journal of Propulsion Technology, 2010, 31(5):634-640(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201005023
    [86] 刘世杰, 覃慧, 林志勇, 等.连续旋转爆震波细致结构及自持机理[J].推进技术, 2011, 32(3):431-436. Liu S J, Qin H, Lin Z Y, et al. Detailed structure and propagating mechanism research on continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2011, 32(3):431-436(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201103025
    [87] 刘世杰, 林志勇, 孙明波, 等.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报, 2010, 32(5):1-6. Liu S J, Lin Z Y L, Sun M B, et al. Numerical simulation of cellular detonation using different chemical reacting source term methods[J]. Journal of National University of Defense Technology, 2010, 5:1-6(in Chinese). doi: 10.3969/j.issn.1001-2486.2010.05.001
    [88] Liu S J, Lin Z Y, Sun M B, et al. Thrust vectoring of a continuous rotating detonation engine by changing the local injection pressure[J]. Chinese Physics Letters, 2011, 28(9):094704. doi: 10.1088/0256-307X/28/9/094704
    [89] Liu S J, Lin Z Y, Liu W D, et al. Experimental realization of H2/air continuous rotating detonation in a cylindrical combustor[J]. Combustion Science and Techno-logy, 2012, 184(9):1302-1317. doi: 10.1080/00102202.2012.682669
    [90] Liu S J, Lin Z Y, Liu W D, et al. Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(2):326-341. doi: 10.1177/0954410011433542
    [91] 林伟, 周进, 林志勇, 等.热射流起爆过程的数值模拟[J].国防科技大学学报, 2015, 37(1):70-77, 89. Lin W, Zhou J, Lin Z Y, et al. Numerical simulation of detonation onset by hot jets[J] Journal of National University of Defense Technology, 2015, 37(1):70-77, 89(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012
    [92] 周朱林, 刘卫东, 刘世杰, 等.受侧向膨胀影响的爆震波传播过程研究[J].推进技术, 2013, 34(5):713-720. Zhou Z L, Liu W D, Liu S J, et al. Investigation on propagation process of detonation wave influenced by lateral expansion[J]. Journal of Propulsion Technology, 2013, 34(5):713-720(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201305021
    [93] 王迪, 周进, 林志勇.带扩张喷管的氢氧连续旋转爆震发动机工作过程数值仿真[J].战术导弹技术, 2015(6):57-65. Wang D, Zhou J, Lin Z Y. Numerical simulation on the working process of the hydrogen-oxygen continuous rota-ting engine with an expansive nozzle[J]. Tactical Missile Technolog, 2015(6):57-65(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201506011
    [94] 刘世杰, 刘卫东, 林志勇, 等.氢燃料连续旋转爆震冲压发动机试验[C].第九届全国高超声速科技学术会议, 2017. Liu S J, Liu W D, Lin Z Y, et al. Experimental research on the continuous rotating detonation ramjet engine[C]. The 9th National Hypersonic Technology Conference, 2017(in Chinese).
    [95] 马虎, 封锋, 武晓松, 等.压力条件对旋转爆震发动机的影响[J].弹道学报, 2012, 24(4):94-98. Ma H, Feng F, Wu X S, et al. Effect of pressure condition on rotating detonation engine[J]. Journal of Ballis-tics, 2012, 24(4):94-98(in Chinese). doi: 10.3969/j.issn.1004-499X.2012.04.021
    [96] 陈洁, 王栋, 马虎, 等.轴向长度对旋转爆震发动机的影响[J].航空动力学报, 2013, 28(4):844-849. Chen J, Wang D, Ma H, et al. Influence of axial length on rotating detonation engine[J]. Journal of Aerospace Power, 2013, 28(4):844-849(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201304018
    [97] 高剑, 马虎, 裴晨曦, 等.喷管对旋转爆震发动机性能影响的实验[J].航空动力学报, 2016, 31(10):2443-2453. Gao J, Ma H, Pei C X, et al. Experiment of effect of nozzle shapes on the performance of rotating detonation engine[J]. Journal of Aerospace Power, 2016, 31(10):2443-2453(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201610018
    [98] 高剑, 武晓松, 马虎, 等.不同燃烧室长度的旋转爆震发动机实验研究[J].推进技术, 2016, 37(10):1991-2000. Gao J, Wu X S, Ma H, et al. Experimental research on rotating detonation engines with different combustion chamber length[J]. Journal of Propulsion Technology, 2016, 37(10):1991-2000(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201610026
    [99] 周胜兵, 王栋, 马虎, 等.小氧化剂喷注面积下旋转爆震实验研究[C].中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议论文集.西安: 中国航天第三专业信息网, 2016. Zhou S B, Wang D, Ma H, et al. Experimental study on rotating detonation with small oxidizer injection area[C]. The first joint conference on Aerospace Power, Xi'an: Aerospace Propulsion Technology Information Society, 2016(in Chinese).
    [100] 徐灿, 马虎, 严宇, 等.旋转爆震发动机工作特性试验研究[J].弹道学报, 2017, 29(3):74-81. Xu C, Ma H, Yan Y, et al. Experimental study on operating characteristics of rotating detonation engine[J]. Journal of Ballistics, 2017, 29(3):74-81(in Chinese). doi: 10.3969/j.issn.1004-499X.2017.03.013
    [101] Hu M A, Feng F, Wu X S, et al. Effect of pressure condition on rotating detonation engine[J]. Journal of Ballistics, 2012, 24(4):94-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddxb201204021
    [102] Zhou S B, Ma H, Liu D K, et al. Experimental study of a hydrogen-air rotating detonation combustor[J]. International Journal of Hydrogen Energy, 2017, 42(21):14741-14749. doi: 10.1016/j.ijhydene.2017.04.214
    [103] Peng L, Wang D, Wu X S, et al. Ignition experiment with automotive spark on rotating detonation engine[J]. International Journal of Hydrogen Energy, 2015, 40(26):8465-8474. doi: 10.1016/j.ijhydene.2015.04.126
    [104] 郑权, 翁春生, 白桥栋.倾斜环缝喷孔式连续旋转爆轰发动机试验[J].推进技术, 2014, 35(4):570-576. Zheng Q, Weng C S, Bai Q D. Experiment on continuous rotating detonation engine with tilt slot injector[J]. Journal of Propulsion Technology, 2014, 35(4):570-576(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201404020
    [105] 郑权, 翁春生, 白桥栋.当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J].推进技术, 2015, 36(6):947-952. Zheng Q, Weng C S, Bai Q D. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine[J]. Journal of Propulsion Technology, 2015, 36(6):947-952(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201506020
    [106] 李宝星, 翁春生.液态燃料对连续旋转爆轰发动机爆轰特性的影响[J].爆炸与冲击, 2018, 38(2):331-338. Li B X, Weng C S. Influence of liquid fuel on the detonation characteristics of continuous rotating detonation engine[J]. Explosion and Shock Waves, 2018, 38(2):331-338(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bzycj201802013
    [107] 王研艳, 翁春生.尾喷管构型对多循环两相脉冲爆轰发动机流场及性能影响[J].航空动力学报, 2013, 28(10):2256-2266. Wang Y Y, Weng C S. Effects of nozzle on flow field and performance of multi-cycle two-phase pulse detonation engines[J]. Journal of Aerospace Power, 2013, 28(10):2256-2266(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201310014
    [108] 邵业涛, 刘勐, 王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术, 2009, 30(6):717-721. Shao Y T, Liu M, Wang J P. Numerical simulation of continuous rotating detonation engine in column coordi-nate[J]. Journal of Propulsion Technology, 2009, 30(6):717-721(in Chinese). doi: 10.3321/j.issn:1001-4055.2009.06.015
    [109] 唐新猛, 王健平, 邵业涛.连续旋转爆轰波在无内柱圆筒内的数值模拟[J].航空动力学报, 2013, 28(4):792-799. Tang X M, Wang J P, Shao Y T. 3D simulation of rotating detonation wave in combustion chambers without inner wall[J]. Journal of Aerospace Power, 2013, 28(4):792-799(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201304010
    [110] 武丹, 刘岩, 王健平.连续旋转爆轰发动机参数特性的三维数值模拟[J].航空动力学报, 2015, 30(7):1576-1582. Wu D, Liu Y, Wang J P. Three-dimensional numerical simulation of the parametric properties of continuously rotating detonation engine[J]. Journal of Aerospace Power, 2015, 30(7):1576-1582(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201507006
    [111] 邵业涛, 王健平.连续爆轰发动机的二维数值模拟研究[J].航空动力学报, 2009, 24(5):980-986.Shao Y T, Wang J P. Two-dimensional simulation of continuous detonation engine[J]. Journal of Aerospace Power, 2009, 24(5):980-987(in Chinese). http://d.old.wanfangdata.com.cn/Conference/6591598
    [112] 武丹, 王健平.粘性及热传导对于爆轰波的影响[J].应用力学学报, 2012, 29(6):630-635. Wu D, Wang J P. Influences of Viscosity and thermal conductivity on detonation waves[J]. Chinese Journal of Applied Mechanics, 2012, 29(6):630-635(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yylxxb201206002
    [113] Wang Y H, Wang J P, Li Y S, et al. Induction for multiple rotating detonation waves in the hydrogen-oxygen mixture with tangential flow[J]. International Journal of Hydrogen Energy, 2014, 39(22):11792-11797. doi: 10.1016/j.ijhydene.2014.05.162
    [114] Wu D, Liu Y, Liu Y S, et al. Numerical investigations of the restabilization of hydrogen-air rotating detonation engines[J]. International Journal of Hydrogen Energy, 2014, 39(28):15803-15809. doi: 10.1016/j.ijhydene.2014.07.159
    [115] Zhou R, Wang J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12):3632-3645. doi: 10.1016/j.combustflame.2012.07.007
    [116] Shao Y T, Liu M, Wang J P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance[J]. Chinese Journal of Aeronautics, 2010, 23(6):647-652. doi: 10.1016/S1000-9361(09)60266-1
    [117] Shao Y T, Liu M, Wang J P. Numerical investigation of rotating detonation engine propulsive performance[J]. Combustion Science and Technology, 2010, 182(11/12):1586-1597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00102202.2010.497316
    [118] Shao Y T, Wang J P. Change in continuous detonation wave propagation mode from rotating detonation to standing detonation[J]. Chinese Physics Letters, 2010, 27(3):034705. doi: 10.1088/0256-307X/27/3/034705
    [119] Tang X M, Wang J P, Shao Y T. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162(4):997-1008. doi: 10.1016/j.combustflame.2014.09.023
    [120] Wang Y H, Wang J P. Effect of equivalence ratio on the velocity of rotating detonation[J]. International Journal of Hydrogen Energy, 2015, 40(25):7949-7955. doi: 10.1016/j.ijhydene.2015.04.072
    [121] Xie Q, Wang B. Performance analysis of rotating detonation rocket based combined cycle propulsion[C]. Proceedings of the 6th Eurpean Conference for Aeronatutics and Space Sciences, 2014.
    [122] Xie Q F, Wang B. Performance analysis of propulsion powered by rotating detonation rocket based combined cycle[C]. Proceedings of the 22rd International Society for Air Breathing Engines, 2015.
    [123] Wang B, Xie Q F, Zhang H Q. Key technical analysis of liquid rocket based combined cycle propulsion[C]. Proceedings of the 21rd International Society for Air Breathing Engines, Busan, Korea: ISABE, 2013.
    [124] Wang B, Xie Q, Zou M, et al. Theoretic analysis of ejector mode of rocket based combined cycle propulsion[C]. Proceedings of the 5th Eurpean Conference for Aeronatutics and Space Sciences, 2013.
    [125] Wang B, Xie Q, Wen H. Stabilities of rotation detonation[C]. Proceedings of the 1st International Conference in Aerospace for Young Scientists, Singa-pore, 2016.
    [126] Wen H, Xie Q, Wang B. Stabilities of rotation deton-ation[C]. Proceedings of the 31st International Symposi-um on Shock waves-Part 1: Fundamentals, Springer, 2017.
    [127] Xie Q F, Wen H C, Li W H, et al. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition[J]. Energy, 2018, 151:408-419. doi: 10.1016/j.energy.2018.03.062
    [128] Xie Q F, Wang B, Wen H C, et al. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition[J]. Journal of Propulsion and Power, 2018, 35(1):141-151. http://cn.bing.com/academic/profile?id=7878bbed0d6fa22b3e7f11b46c585a2e&encoded=0&v=paper_preview&mkt=zh-cn
    [129] Xie Q F, Wang B, Wen H C, et al. Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air[J]. Proceedings of the Combustion Institute, 2019, 37(3):3425-3432. doi: 10.1016/j.proci.2018.08.046
  • 加载中
图(36) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-08-16
  • 发布日期:  2020-01-20
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回