Citation: | QI Qiong, HAN Qing. Prediction Method of Cross-Flow Instabilities-Induced Transition Based on Spalart-Allmaras-γ-¯Reθt Transition Model[J]. PHYSICS OF GASES, 2016, 1(3): 19-24. |
[1] |
Langtry R B. A correlation-based transition model using local variables for unstructured parallelized CFD-codes[D]. Stuttgart: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium, Universität Stuttgart, 2006.
|
[2] |
Grabe C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[R]. AIAA 2012-0448, 2012.
|
[3] |
Medida S, Baeder J D. Application of the correlation based γ-Reθt transition model to the Spalart-Allmaras turbulence model[R]. AIAA 2011-3979, 2011.
|
[4] |
章梓雄, 董曾南.粘性流体力学[M].北京:清华大学出版社, 1998: 129-134.
Zhang Z X, Dong Z N. Viscous fluid dynamics[M]. Beijing: Tsinghua University Press, 1998: 129-134(in Chinese).
|
[5] |
Arnal D, Habiballah M, Coutols E. Théorie de L′instabilité Laminaire et Critéres de Transition en Éncoulement bi et Tridimensionnel[J]. La Recherche Aérospatiale, 1984, 2: 125-143. https://es.scribd.com/document/314604009/ANSYS-CFX-Reference-Guide
|
[6] |
Somers D M. Design and experimental results for a natural laminar flow airfoil for general aviation applications[R]. NASA TP 1861, 1981.
|
[7] |
Dagenhart J R, Saric W S. Crossflow stability and transition experiments in swept-wing flow[R]. NASA Langley Research Center TP-1999-209344, 1999.
|
[8] |
Sobieczky H. DLR-F5: Test wing for CFD and applied aerodynamics. Case B-5 in: test cases for CFD evaluation[R]. AGARD FDP AR 1994-303, 1994.
|
[9] |
Grabe C, Krumbein A. Extension of the γ-Reθt model for prediction of crossflow transition[R]. AIAA 2014-1269, 2014.
|