Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
YUAN Xian-xu, CHEN Qi, ZHANG Han-xin, et al. Analysis About Destabilization of Reentry Vehicles with Bifurcation Theory and its Numerical Validation[J]. PHYSICS OF GASES, 2016, 1(4): 12-26.
Citation: YUAN Xian-xu, CHEN Qi, ZHANG Han-xin, et al. Analysis About Destabilization of Reentry Vehicles with Bifurcation Theory and its Numerical Validation[J]. PHYSICS OF GASES, 2016, 1(4): 12-26.

Analysis About Destabilization of Reentry Vehicles with Bifurcation Theory and its Numerical Validation

More Information
  • Received Date: May 11, 2016
  • Revised Date: May 24, 2016
  • Published Date: July 19, 2016
  • The stabilization of reentry vehicles is the one of the most important problems in the design of aerodynamics, it is vital to the safety of flight especilly in the re-entry process. The destabilization of reentry vehicles with blunt body and slender body was studied using the bifurcation theory of nonlinear autonomous dynamic system, and the analysis was validated by numerical simulation coupling Navier-Stokes equations and pitching motion equations. The investigations show that, in the process of the astronautic vehicles reentering into the atmosphere, if there is only one trim angle of attack, the characteristic of dynamic destabilization nearby the trim angle would be the hopf bifurcation with the Mach number decreased, and the form of bifurcation is subcritical or supercritical. While the trim angles of attack increased(commomly from 1 to 3) with the Mach number decreased, the behavior of dynamic destabilization nearby the trim angle is more complex. Three critical Mach numbers may be emergent in turn in the decreased process of Mach number, and at these three critical Mach numbers, the corresponding behavior of destabilization is saddle-node bifurcation, hopf bifurcation and homoclinic bifurcation.
  • [1]
    Haya-Ramos R, Bonetti D, Serna J, et al. Validation of the IXV mission analysis and flight mechanics design[R]. AIAA 2012-5966, 2012.
    [2]
    赵梦熊.载人飞船返回舱的动稳定性[J].实验流体力学, 1995, 9(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC502.000.htm
    [3]
    James S G, Benjamin S K, Randolph P L, et al. Crew Exploration Vehicle (CEV) crew module shape selection analysis and CEV aeroscience project overview[R]. AIAA 2007-603, 2007.
    [4]
    戴金雯. 载人飞船返回舱高空稀薄气动特性研究[D]. 长沙: 国防科学技术大学, 2004.

    Dai J W. Investigation on rarefied gas aerodynamic characteristic of reentry module[D]. Changsha:National University of Defense Technology, 2004(in Chinese).
    [5]
    Ruduger S. Practical bifurcation and stability analysis:from equilibrium to chaos[M]. New York:Springer-Verlag, 1994:23-35.
    [6]
    袁先旭. 非定常流动数值模拟及飞行器动态特性分析研究[D]. 绵阳: 中国空气动力研究与发展中心. 2002.

    Yuan X X. Numerical simulation for unsteady flows and research on dynamic characteristics of vehicle [D]. Mianyang:China Aerodynamics Research and Development Center, 2002(in Chinese).
    [7]
    张涵信, 袁先旭, 叶友达, 等.飞船返回舱俯仰振荡的动态稳定性研究[J].空气动力学学报, 2002, 20(3):247-259. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200203000.htm

    Zhang H X, Yuan X X, Ye Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3):247-259(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200203000.htm
    [8]
    张涵信, 袁先旭, 谢昱飞, 等.不带稳定翼飞船返回舱俯仰动稳定性研究[J].空气动力学学报, 2004, 22(2):130-134. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200402002.htm

    Zhang H X, Yuan X X, Xie Y F, et al. Study of the dynamic stability of a pitching unfinned reentry capsule[J]. Acta Aerodynamica Sinica, 2004, 22(2):130-134(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200402002.htm
    [9]
    Etkin B, Reid L D. Dynamics of flight:stability and control[M]. New York:Wiley, 1996:18-22.
    [10]
    Wang C C, Chen C K. Bifurcation analysis of self-acting gas journal bearing[J]. Journal of Tribology, 2001, 123(44):755-767. https://www.researchgate.net/publication/239403103_Bifurcation_Analysis_of_Self-Acting_Gas_Journal_Bearings
    [11]
    Steindl A, Troger H. Methods for dimension reduction and their application in nonlinear dynamics[J]. International Jounal of Solid and Structures, 2001, 38(2):2131-2147. http://www.sciencedirect.com/science/article/pii/S0020768300001578
    [12]
    袁先旭, 张涵信, 谢昱飞.基于CFD方法的俯仰静动导数数值计算[J].空气动力学学报, 2005, 23(4):458-463. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200504011.htm

    Yuan X X, Zhang H X, Xie Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamics Sinica, 2005, 23(4):458-463(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200504011.htm
    [13]
    Yoshinege T, Shimoda T, Tate A, et al. Orbital Re-entry Experiment Vehicle ground and flight dynamic test results comparison[J]. Journal of Spacecraft and Rockets, 1996, 33(5), 635-642. DOI: 10.2514/3.26813
    [14]
    袁先旭, 陈坚强, 王文正.平头增阻再入体俯仰动态特性计算与流动机理分析[J].空气动力学学报. 2007, 25(3), 300-305. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200703004.htm

    Yuan X X, Chen J Q, Wang W Z. Pitching dynamic stability computation for plane nose reentry vehicle and flow mechanism analysis[J]. Acta Aerodynamics Sinica, 2007, 25(3):300-305(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200703004.htm
    [15]
    袁先旭, 张涵信, 谢昱飞.飞船返回舱再入俯仰动稳定吸引子数值仿真[J].空气动力学学报, 2007, 25(4):431-436. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200704004.htm

    Yuan X X, Zhang H X, Xie Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with Mach number prediction[J]. Acta Aerodynamics Sinica, 2007, 25(4):431-436(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200704004.htm
    [16]
    Zhang H X, Zhang Z, Yuan X X, et al. Physical analysis and numerical simulation for the dynamic behaviour of vehicles in pitching oscillations or rocking motions[J]. Science in ChinaSeries E:Technological Sciences, 2007, 50(4):385-401. DOI: 10.1007/s11431-007-0047-8

Catalog

    Article Metrics

    Article views (99) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return