Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
YANG Lei, YE Zheng-yin, WU Jie. Influence of Elastic Carrier to Dynamic Responses of Store[J]. PHYSICS OF GASES, 2016, 1(4): 1-11.
Citation: YANG Lei, YE Zheng-yin, WU Jie. Influence of Elastic Carrier to Dynamic Responses of Store[J]. PHYSICS OF GASES, 2016, 1(4): 1-11.

Influence of Elastic Carrier to Dynamic Responses of Store

More Information
  • Received Date: May 19, 2016
  • Revised Date: June 04, 2016
  • Published Date: July 19, 2016
  • The separation between the aircraft and store is one of the most important and difficult phases in air-launch-to-orbit technology. There exists strong aerodynamic interference between the aircraft and the store in store separation. When the aspect ratio of the aircraft is large, the elastic deformations of the wing must be considered. The main purpose of this article is to study the influence of the interference aerodynamics caused by the elastic deformations of the wing to the unsteady aerodynamics of the store. By solving the coupled functions of unsteady Navier-Stokes equations, six degrees of freedom dynamic equations and structural dynamic equations simultaneously, the store separation with the elastic deformation of the aircraft considered was simulated numerically. The interactive aerodynamic forces were analyzed. The study shows that the interference aerodynamics is obvious at earlier time during the separation, and the dominant frequency of the elastic wing determines the aerodynamic forces frequencies of the store. Besides, when the relative distance between the carrier and store is small, the interference aerodynamic forces caused by the elastic vibration of the carrier is about half of the total aerodynamic forces of the store.
  • [1]
    Poth S M, Fisher M A, Levy D W, et al. Design of an airborne launch vehicle and an air launched space booster[R]. AIAA 1993-3955, 1993.
    [2]
    Henri S, Helene P L, Farges J L. Analysis and optimization of an air-launch-to-orbit separation[J]. Acta Astronautica, 2015, 108(3): 18-29. http://www.sciencedirect.com/science/article/pii/S0094576514004974
    [3]
    Marti S K, Nesrin S K, Bob M, et al. Flight testing of a new earth-to-orbit air-launch method[J]. Journal of Aircraft, 2006, 43(3): 577-583. DOI: 10.2514/1.18559
    [4]
    Marti S K, Nesrin S K, Hudson G C, et al. Trade studies for air launching a small launch vehicle from a cargo aircraft[R]. AIAA 2005-621, 2005.
    [5]
    Marti S K, Nesrin S K, Hudson G C, et al. Gravity air launching of earth-to-orbit space vehicles[R]. AIAA 2006-7256, 2006.
    [6]
    程仁全, 周东轩.外挂物风洞投放实验技术研究[J].气动实验与测量控制, 1989, 3(1): 31-37. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC198901005.htm

    Cheng R Q, Zhou D X. Studies of experimental techniques of store-dropping in the wing tunnel[J]. Aerodynamic Experiment and Measurement & Control, 1989, 3(1): 31-37(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC198901005.htm
    [7]
    Wang Z J, Parthasarathy V. A fully automated chimera methodology for multiple moving body problems[J]. International Journal for Numerical Methods in Fluids, 2000, 33(7): 919-938. DOI: 10.1002/(ISSN)1097-0363
    [8]
    Tang Z G, Li B, Zheng M, et al. Store separation simulation using overset unstructured grid[J]. Acta Aerodynamic Sinica, 2009, 27(5): 592-596. http://en.cnki.com.cn/Article_en/CJFDTotal-KQDX200905016.htm
    [9]
    Charlton E F, Davis M B. Computational optimization of the F-35 external fuel tank for store separation[R]. AIAA 2008-376, 2008.
    [10]
    Tomaro R F, Witzeman F C, Strang W Z. Simulation of store separation for the F/A-18C using cobalt[J]. Journal of Aircraft, 2000, 37(3): 361-367. DOI: 10.2514/2.2614
    [11]
    Jafari M, Toloei A, Ghasemlu S, et al. Simulation of store separation using low-cost CFD with dynamic meshing[J]. International Journal of Engineering, 2014, 27(5): 775-784. https://www.researchgate.net/publication/290530725_Simulation_of_store_separation_using_Low-cost_CFD_with_dynamic_meshing
    [12]
    Prewitt N C, Belk D M, Shyy W. Parallel computing of overset grids for aerodynamic problems with moving objects[J]. Progress in Aerospace Sciences, 2000, 36(2): 117-172. DOI: 10.1016/S0376-0421(99)00013-5
    [13]
    肖中云, 江雄, 牟斌, 等.并行环境下外挂物动态分离过程的数值模拟[J].航空学报, 2010, 31(8): 1509-1516. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201008004.htm

    Xiao Z Y, Jiang X, Mou B, et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1509-1516(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201008004.htm
    [14]
    Kozak M T, Yildiz E N, Yazicioglu Y, et al. Effects of aircraft aeroelastic deformations on external store separation dynamics[R]. IMECE 2013-63772, 2013.
    [15]
    Hua R H, Zhao C X, Ye Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science and Technology, 2015, 45(2): 128-139. http://www.sciencedirect.com/science/article/pii/S1270963815001303
    [16]
    蒋跃文. 基于广义网格的CFD方法及其流固耦合应用[D]. 西安: 西北工业大学, 2013.

    Jiang Y W. Numerical solution of Navier-Stokes equations on generalized mesh and its applications[D]. Northwestern Polytechnical University, 2013(in Chinese).
    [17]
    Zhang W W, Jiang Y W, Ye Z Y. Two better loosely coupled solution algorithms of CFD based aeroelastic simulation[J]. Engineering Applications of Computational Fluid Mechanics, 2007, 1(4): 253-262. DOI: 10.1080/19942060.2007.11015197
    [18]
    蒋跃文, 张伟伟, 叶正寅.基于CFD技术的流场/结构时域耦合求解方法研究[J].振动工程学报, 2007, 20(4): 396-400. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200704012.htm

    Jiang Y W, Zhang W W, Ye Z Y. Study of time-marching method for fluid/structure coupling solution based on CFD technique[J]. Journal of Vibration Engineering, 2007, 20(4): 396-400 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC200704012.htm
    [19]
    Yang L, Ye Z Y. The interference aerodynamics caused by the wing elasticity during store separation[J]. Acta Astronautica, 2016, 121(4): 116-129. http://www.sciencedirect.com/science/article/pii/S0094576515300357
    [20]
    Heim E R. CFD wing-pylon-finned store mutual interference wind tunnel experiment[R]. AEDC-TSR-1991-P4, 1991.
    [21]
    Yates E C. AGARD standard aeroelastic configurations for dynamic response. Ⅰ: wing 445.6[R]. AGARD Report No. 765, 1988.
  • Related Articles

    [1]LI Jin-ying, DAI Yu-ting, YANG Chao. Aerodynamic Calculation of Airfoil Dynamic Stall Based on Data-Driven Transition Model[J]. PHYSICS OF GASES, 2023, 8(6): 20-28. DOI: 10.19527/j.cnki.2096-1642.1069
    [2]YE Kun, ZHANG Yi-fan, YE Zheng-yin. Research on Aerothermoelasticity for Hypersonic Inlet with Complex Internal Flow[J]. PHYSICS OF GASES, 2023, 8(6): 1-19. DOI: 10.19527/j.cnki.2096-1642.1053
    [3]TENG Hong-hui, NIU Shu-zhen, YANG Peng-fei, ZHOU Lin, WANG Kuan-liang. Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows[J]. PHYSICS OF GASES, 2023, 8(5): 1-9. DOI: 10.19527/j.cnki.2096-1642.1033
    [4]LIU Yi, XU Yun-tao, LYU Ji-nan. Aerodynamic Analysis Based on Nonlinear Aeroelastic Large Deformation for Large Aspect Ratio Wing[J]. PHYSICS OF GASES, 2020, 5(6): 39-44. DOI: 10.19527/j.cnki.2096-1642.0811
    [5]CHANG Xing-hua, WANG Nian-hua, MA Rong, TIAN Run-yu, ZHANG Lai-ping. Dynamic Hybrid Mesh Generator Coupled with Overset and Deformation in Parallel Environment[J]. PHYSICS OF GASES, 2019, 4(6): 12-21. DOI: 10.19527/j.cnki.2096-1642.0760
    [6]OU Dong-bin, ZENG Hui, MA Han-dong, ZUO Guang. Magneto-Hydro-Dynamic Acceleration and Magneto-Hydro-Dynamic Wind Tunnel[J]. PHYSICS OF GASES, 2019, 4(3): 54-63. DOI: 10.19527/j.cnki.2096-1642.0755
    [7]LIU Ling-jun, ZHOU Yue, GAO Zhen-xun. Aerodynamic Force Calculation and Inverse Design for Airfoil Based on Neural Network[J]. PHYSICS OF GASES, 2018, 3(5): 41-47. DOI: 10.19527/j.cnki.2096-1642.2018.05.005
    [8]LIU Han-lun, ZHANG Zhong-qiang, HAO Mao-lei, CHENG Guang-gui, DING Jian-ning. Molecular Dynamics Simulations on Flow Properties of Gas Mixture in Nanochannels[J]. PHYSICS OF GASES, 2018, 3(4): 32-40. DOI: 10.19527/j.cnki.2096-1642.2018.04.004
    [9]CHEN Wei-fang, ZHAO Wen-wen, JIANG Zhong-zheng, LIU Hua-lin. A review of moment equations for rarefied gas dynamics[J]. PHYSICS OF GASES, 2016, 1(5): 9-24.
    [10]YU Jia-lei, TIAN Shu-ling, CHEN Long, XIA Jian. Numerical Simulation of Flap-Control Aeroelastic Response Using CFD/CSD Coupling[J]. PHYSICS OF GASES, 2016, 1(4): 37-42.

Catalog

    Article Metrics

    Article views (54) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return