Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
LI Zongyang, DOU Yibin, REN Zhiyi, LU Yunchao, CHEN Junming. Heat Transfer Characteristics of Gap Flows in Shock-Wave Interference Region of Hypersonic Vehicles[J]. PHYSICS OF GASES, 2024, 9(2): 1-8. doi: 10.19527/j.cnki.2096-1642.1100
Citation: LI Zongyang, DOU Yibin, REN Zhiyi, LU Yunchao, CHEN Junming. Heat Transfer Characteristics of Gap Flows in Shock-Wave Interference Region of Hypersonic Vehicles[J]. PHYSICS OF GASES, 2024, 9(2): 1-8. doi: 10.19527/j.cnki.2096-1642.1100

Heat Transfer Characteristics of Gap Flows in Shock-Wave Interference Region of Hypersonic Vehicles

doi: 10.19527/j.cnki.2096-1642.1100
  • Received Date: 19 Dec 2023
  • Revised Date: 26 Dec 2023
  • In view of the heat transfer problems of gap flows near the shock-wave interference region of hypersonic vehicles, a two-dimensional model of the shock generator and gap was established. By using CFD technology, the internal flow heat transfer characteristics with shock waves in the front, middle and back of the gap were studied. The results showed that compared to the flow fields without shock wave, the vortex structure of the flow inside the gap changes obviously when the shock wave acts on the front and middle of the gap, resulting in a sharp increase in the flow intensity and heat inside the gap. However, when the shock wave acts on the rear part of the gap, the vortex structure inside the gap does not change significantly, and the far-end wall heat flux near the gap lip decreases locally, which is beneficial to the shape protection of the thermal protection structure. The results clearly indicated that it is necessary to avoid the position where shock wave acts on the front and middle part of gap in structural thermal protection design.

     

  • loading
  • [1]
    Hinderks M, Radespiel R, Gülhan A. Simulation of hypersonic gap flow with consideration of fluid structure interaction[R]. AIAA 2004-2238, 2004.
    [2]
    王庆洋, 丛堃林, 刘丽丽, 等. 临近空间高超声速飞行器气动力及气动热研究现状[J]. 气体物理, 2017, 2(4): 46-55. doi: 10.19527/j.cnki.2096-1642.2017.04.005

    Wang Q Y, Cong K L, Liu L L, et al. Research status on aerodynamic force and heat of near space hypersonic flight vehicle[J]. Physics of Gases, 2017, 2(4): 46-55(in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.04.005
    [3]
    Wieting A R. Experimental investigation of heat-transfer distributions in deep cavities in hypersonic separated flow[R]. NASA TN D-5908, 1970.
    [4]
    Paolicchi L T, Santos W F. Length-to-depth ratio effects on aerodynamic surface quantities of a rarefied hypersonic gap flow[R]. AIAA 2013-2789, 2013.
    [5]
    Palmer G, Kontinos D, Sherman B. Surface heating effects of X-33 vehicle TPS panel bowing, steps, and gaps[R]. AIAA 98-0865, 1998.
    [6]
    童秉纲. 航天飞机防热瓦缝隙气动加热的讨论[J]. 气动实验与测量控制, 1990, 4(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199004000.htm

    Tong B G. A qualitative study of tile gap heating on space shuttle[J]. Aerodynamic Experiment and Measurement & Control, 1990, 4(4): 1-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199004000.htm
    [7]
    唐功跃, 吴国庭, 姜贵庆. 缝隙流动分析及其热环境的工程计算[J]. 中国空间科学技术, 1996, 16(6): 1-7, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ606.000.htm

    Tang G Y, Wu G T, Jiang G Q. Flow analysis and numerical computation of thermal environment in gaps[J]. Chinese Space Science and Technology, 1996, 16(6): 1-7, 38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ606.000.htm
    [8]
    张昊元, 宗文刚, 桂业伟. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201408006.htm

    Zhang H Y, Zong W G, Gui Y W. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8): 893-900(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201408006.htm
    [9]
    邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511002.htm

    Qiu B, Zhang H Y, Guo Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3515-3521(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511002.htm
    [10]
    阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006.

    Yan C. Method and application of computational fluid dynamics[M]. Beijing: Beihang University Press, 2006(in Chinese).
    [11]
    Yoon S, Jameson A. Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. doi: 10.2514/3.10007
    [12]
    Bohr T, Jensen M H, Paladin G, et al. Dynamical systems approach to turbulence[M]. Cambridge: Cambridge University Press, 2005.
    [13]
    Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [14]
    刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212005.htm

    Liu J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2192-2201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212005.htm
    [15]
    杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报, 2014, 35(1): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201401011.htm

    Yang J G, Wu H. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 116-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201401011.htm
    [16]
    Liu F, Zheng X Q. A strongly coupled time-marching method for solving the Navier-Stokes and k-ω turbulence model equations with multigrid[J]. Journal of Computational Physics, 1996, 128(2): 289-300. doi: 10.1006/jcph.1996.0211
    [17]
    张亮, 程晓丽, 艾邦成. 高超声速气动热数值模拟法向网格准则[J]. 力学与实践, 2014, 36(6): 722-727, 741. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201406005.htm

    Zhang L, Cheng X L, Ai B C. Normal grid rule for hypersonic heat flux numerical simulation[J]. Mechanics in Engineering, 2014, 36(6): 722-727, 741(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201406005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (66) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return