Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
ZHANG Luxing, WANG Guangxue, DU Lei, YU Fayuan, ZHANG Huaibao. Effects of Mach Number and Wall Temperature on HyTRV Boundary Layer Transition[J]. PHYSICS OF GASES, 2024, 9(2): 9-20. doi: 10.19527/j.cnki.2096-1642.1098
Citation: ZHANG Luxing, WANG Guangxue, DU Lei, YU Fayuan, ZHANG Huaibao. Effects of Mach Number and Wall Temperature on HyTRV Boundary Layer Transition[J]. PHYSICS OF GASES, 2024, 9(2): 9-20. doi: 10.19527/j.cnki.2096-1642.1098

Effects of Mach Number and Wall Temperature on HyTRV Boundary Layer Transition

doi: 10.19527/j.cnki.2096-1642.1098
  • Received Date: 13 Dec 2023
  • Revised Date: 02 Jan 2024
  • There is a complex transition phenomenon in the flow field of a typical hypersonic vehicle, which has a significant impact on the performance of the vehicle. The effects of Mach number and wall temperature on the transition of HyTRV were studied by numerical simulation methods. The self-developed software of the research group was used to carry out numerical calculations. The range of Mach number was 3~8, and the range of wall temperature was 150~900 K. Firstly, the hypersonic corrections of the γ-$\mathop R\limits^ \sim $eθt transition model and the SST turbulence model were carried out. The pressure gradient coefficient correction and the high-speed cross-flow correction were introduced into the γ-$\mathop R\limits^ \sim $eθt transition model, and the compressibility corrections of the closure coefficients β* and β of the SST turbulence model were carried out. Then, the grid independence verification was carried out, and the modified numerical method and software platform were confirmed by comparing with experimental results. Finally, the effects of Mach number and wall temperature on the transition law of the HyTRV boundary layer were studied. The results show that the transition area is mainly concentrated on both sides of the upper surface and the center line of the lower surface. With the increase of the incoming Mach number, the starting position of transition on the upper and lower surfaces is greatly backward, and the turbulent zone is greatly reduced, but it still exists. At the same time, the friction coefficient of the laminar flow zone on the upper surface increases continuously, and the friction coefficient of the turbulent zone on the lower surface decreases. As the wall temperature increases, the starting position of transition on the upper and lower surfaces shifts forward, then rapidly shifts backward, and finally the turbulent zone almost disappears.

     

  • loading
  • [1]
    Obering Ⅲ H, Heinrichs R L. Missile defense for great power conflict: outmaneuvering the China threat[J]. Strategic Studies Quarterly, 2019, 3(4): 37-56.
    [2]
    Cheng C, Wu J H, Zhang Y L, et al. Aerodynamics and dynamic stability of micro-air-vehicle with four flapping wings in hovering flight[J]. Advances in Aerodynamics, 2020, 2(3): 5.
    [3]
    Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6/7): 511-536.
    [4]
    陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm
    [5]
    段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391-403. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002022.htm

    Duan Y, Yao S Y, Li S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391-403(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002022.htm
    [6]
    Zhang Y F, Zhang Y R, Chen J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[R]. AIAA 2017-2409, 2017.
    [7]
    Krause M, Behr M, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA 2008-2598, 2008.
    [8]
    Yi M R, Zhao H Y, Le J L. Hypersonic natural and forced transition simulation by correlation-based intermittency[R]. AIAA 2017-2337, 2017.
    [9]
    向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109011.htm

    Xiang X H, Zhang Y F, Yuan X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202109011.htm
    [10]
    McDaniel R D, Nance R P, Hassan H A. Transition onset prediction for high-speed flow[J]. Journal of Spacecraft and Rockets, 2000, 37(3): 304-309. doi: 10.2514/2.3579
    [11]
    Papp J L, Dash S M. Rapid engineering approach to modeling hypersonic laminar-to-turbulent transitional flows[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 467-475. doi: 10.2514/1.1854
    [12]
    Juliano T J, Schneider S P. Instability and transition on the HIFiRE-5 in a Mach-6 quiet tunnel[R]. AIAA 2010-5004, 2010.
    [13]
    杨云军, 马汉东, 周伟江. 高超声速流动转捩的数值研究[J]. 宇航学报, 2006, 27(1): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200601018.htm

    Yang Y J, Ma H D, Zhou W J. Numerical research on supersonic flow transition[J]. Journal of Astronautics, 2006, 27(1): 85-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200601018.htm
    [14]
    袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802014.htm

    Yuan X X, He K, Chen J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802014.htm
    [15]
    陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202106020.htm

    Chen J Q, Tu G H, Wan B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202106020.htm
    [16]
    陈坚强, 刘深深, 刘智勇, 等. 用于高超声速边界层转捩研究的标模气动布局及设计方法. 中国: 109969374B[P]. 2021-05-18.

    Chen J Q, Liu S S, Liu Z Y, et al. Standard model aerodynamic layout and design method for hypersonic boundary layer transition research. CN, 109969374B[P]. 2021-05-18(in Chinese).
    [17]
    Liu S S, Yuan X X, Liu Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637-1647. doi: 10.1007/s10409-021-01136-5
    [18]
    Chen X, Dong S W, Tu G H, et al. Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body[J]. Journal of Fluid Mechanics, 2022, 938(408): A8.
    [19]
    Qi H, Li X L, Yu C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31. doi: 10.1186/s42774-021-00082-x
    [20]
    万兵兵, 陈曦, 陈坚强, 等. 三维边界层转捩预测HyTEN软件在高超声速典型标模中的应用[J]. 空天技术, 2023(1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD202301015.htm

    Wan B B, Chen X, Chen J Q, et al. Applications of HyTEN software for predicting three-dimensional boundary-layer transition in typical hypersonic models[J]. Aerospace Technology, 2023(1): 150-158(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD202301015.htm
    [21]
    Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables—Part Ⅰ: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422. doi: 10.1115/1.2184352
    [22]
    Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables—Part Ⅱ: test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3): 423-434. doi: 10.1115/1.2184353
    [23]
    Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. doi: 10.2514/1.42362
    [24]
    孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201105004.htm

    Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201105004.htm
    [25]
    牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J]. 空气动力学学报, 2013, 31(1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301019.htm

    Mou B, Jiang X, Xiao Z Y, et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2013, 31(1): 103-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301019.htm
    [26]
    郭隽, 刘丽平, 徐晶磊, 等. γ-$\tilde{Re}_{\theta {\rm t}}$转捩模型在跨声速涡轮叶栅中的应用[J]. 推进技术, 2018, 39(9): 1994-2001. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201904004.htm

    Guo J, Liu L P, Xu J L, et al. Application of γ-$\tilde{Re}_{\theta {\rm t}}$ transition model in transonic turbine cascades[J]. Journal of Propulsion Technology, 2018, 39(9): 1994-2001(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201904004.htm
    [27]
    郑赟, 李虹杨, 刘大响. γ-Reθ转捩模型在高超声速下的应用及分析[J]. 推进技术, 2014, 35(3): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201403003.htm

    Zheng Y, Li H Y, Liu D X. Application and analysis of γ-Reθ transition model in hypersonic flow[J]. Journal of Propulsion Technology, 2014, 35(3): 296-304(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201403003.htm
    [28]
    孔维萱, 阎超, 赵瑞. γ-Reθ模式应用于高速边界层转捩的研究[J]. 空气动力学学报, 2013, 31(1): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301022.htm

    Kong W X, Yan C, Zhao R. γ-Reθ model research for high-speed boundary layer transition[J]. Acta Aerodynamica Sinica, 2013, 31(1): 120-126(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301022.htm
    [29]
    张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报, 2016, 37(4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm

    Zhang Y F, He K, Zhang Y R, et al. Improvement and validation of Menter's transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm
    [30]
    Langtry R B, Sengupta K, Yeh D T, et al. Extending the γ-Reθ correlation based transition model for crossflow effects(Invited)[R]. AIAA 2015-2474, 2015.
    [31]
    Sarkar S. The pressure-dilatation correlation in compressible flows[J]. Physics of Fluids A, 1992, 4(12): 2674-2682. doi: 10.1063/1.858454
    [32]
    Wilcox D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11): 2639-2646. doi: 10.2514/3.11279
    [33]
    马祎蕾, 余平, 姚世勇. 壁温对钝三角翼边界层稳定性及转捩影响[J]. 空气动力学学报, 2020, 38(6): 1017-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202006001.htm

    Ma Y L, Yu P, Yao S Y. Effect of wall temperature on stability and transition of hypersonic boundary layer on a blunt delta wing[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1017-1026(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202006001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (74) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return