Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Turn off MathJax
Article Contents
CHEN Mingshi, WANG Xian. Numerical Study on Factors Affecting the Storage Tank Performance of an Iodine-ion Thruster[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1097
Citation: CHEN Mingshi, WANG Xian. Numerical Study on Factors Affecting the Storage Tank Performance of an Iodine-ion Thruster[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1097

Numerical Study on Factors Affecting the Storage Tank Performance of an Iodine-ion Thruster

doi: 10.19527/j.cnki.2096-1642.1097
  • Received Date: 07 Dec 2023
  • Revised Date: 02 Jan 2024
  • Available Online: 16 Mar 2024
  • Iodine-ion thrusters are mainly used for attitude control and position maintenance of small satellites. They rely on the sublimation and ionization of iodine to generate thrust. The heating methods and structural parameters of the iodine feeding systems have a significant impact on their own working performance. The dynamic grid method was applied to simulate the sublimation phase-transition process of the iodine in the storage tank to study the effects of heating methods and ratios of diameter to height on the performance of storage tank of an iodine-ion thruster. The results indicate that the contact heating method shows the best performance considering the mass flow rate, flow stability, and preheating time among the three heating methods, such as external heating, radiant heating, and contact heating. Besides, the ratio of diameter to height of a storage tank has almost no effect on the change of flow rate for the contact heating method. The flow stability is good. A lower ratio of diameter to height is better for the iodine-ion thruster designed for high thrust. The mass flow rate at the ratio of 0.2 increased by 9.0% compared to the ratio of 1.4. While a larger ratio of diameter to height is better for the iodine-ion thruster designed for high speed of response. The preheating time at the ratio of 0.2 increased by 80% compared to the ratio of 1.4.

     

  • loading
  • [1]
    Manente M, Trezzolani F, Mantellato R, et al. REGULUS:know-how acquired on iodine propellant[C]. 36th International Electric Propulsion Conference. Vienna:University of Vienna, 2019:241-249.
    [2]
    颜能文, 郭宁, 谷增杰. 碘工质空间电推进系统关键技术分析[J]. 真空与低温, 2018, 24(5):332-337. Yan N W, Guo N, Gu Z J. Key technical analysis of iodine space electric propulsion system[J]. Vacuum and Cryogenics, 2018, 24(5):332-337(in Chinese).
    [3]
    Szabo J, Robin M, Paintal S, et al. High density Hall thruster propellant investigations[R]. AIAA 2012-3853, 2012.
    [4]
    Szabo J, Robin M, Paintal S, et al. Iodine plasma propulsion test results at 1-10 kW[J]. IEEE Transactions on Plasma Science, 2015, 43(1):141-148.
    [5]
    Tsay M, Frongillo J, Model J, et al. Maturation of iodine fueled BIT-3 RF ion thruster and RF neutralizer[R]. AIAA 2016-4544, 2016.
    [6]
    Tsay M, Frongillo J, Hohman K, et al. LunarCube:A deep space 6U CubeSat with mission enabling ion propulsion technology[C]. 29th AIAA/USU Conference on Small Satellites, Logan, USA, 2015.
    [7]
    Tsay M, Model J, Barcroft C, et al. Integrated testing of iodine BIT-3 RF ion propulsion system for 6U CubeSat applications[C]. Proceedings of the 35th International Electric Propulsion Conference. Atlanta:Georgia Institute of Technology, 2017.
    [8]
    Saravia M M, Vinci A E, Moriconi B, et al. Absorption-based laser mass flow meter for iodine feeding system for electric propulsion[C]. 2020 IEEE 7th International Workshop on Metrology for AeroSpace(MetroAeroSpace). Pisa:IEEE, 2020:276-281.
    [9]
    Andreussi T, Giannetti V, Leporini A, et al. Influence of the magnetic field configuration on the plasma flow in Hall thrusters[J]. Plasma Physics and Controlled Fusion, 2018, 60(1):014015.
    [10]
    Andreussi T, Saravia M M, Andrenucci M. Plasma characterization in Hall thrusters by Langmuir probes[J]. Journal of Instrumentation, 2019, 14(5):C05011.
    [11]
    Giannetti V, Saravia M M, Leporini L, et al. Numerical and experimental investigation of longitudinal oscillations in hall thrusters[J]. Aerospace, 2021, 8(6):148.
    [12]
    Martínez Martínez J, Rafalskyi D. Design and development of iodine flow control systems for miniaturized propulsion systems[J]. CEAS Space Journal, 2022, 14(1):91-107.
    [13]
    Rafalskyi D, Martínez J M, Habl L, et al. In-orbit demonstration of an iodine electric propulsion system[J]. Nature, 2021, 599(7885):411-415.
    [14]
    Martínez J M, Rafalskyi D, Aanesland A. Development and testing of the NPT30-I2 iodine ion thruster[C]. 36th International Electric Propulsion Conference. Vienna:University of Vienna, 2019.
    [15]
    周长斌, 刘佳, 徐宗琦, 等. 碘工质电推进储供系统设计及实验[J]. 上海航天, 2019, 36(6):97-103. Zhou C B, Liu J, Xu Z Q, et al. Design and experimental of iodine propellant feed system for electric propulsion[J]. Aerospace Shanghai, 2019, 36(6):97-103(in Chinese).
    [16]
    周长斌. 碘工质电推进储供系统设计及实验研究[D]. 上海:上海交通大学, 2020. Zhou C B. Design and experimental study of iodine propellant feed system for electric propulsion[D]. Shanghai:Shanghai Jiao Tong University, 2020(in Chinese).
    [17]
    李鑫. 应用于小卫星的碘工质电推力器储供系统设计及试验研究[D]. 哈尔滨:哈尔滨工业大学, 2020. Li X. Design and experimental study of iodine propellant electric thruster feed system for small satellites[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese).
    [18]
    李鑫, 黄昱璋, 刘辉, 等. 小卫星碘工质电推力器储供系统试验研究[C]. 2020年(第十六届)中国电推进学术研讨会. 北京, 2020. Li X, Huang Y Z, Liu H, et al. Experimental study on the storage and supply system of iodine working fluid electric thrusters for small satellites[C]. The 16th China Electric Power Promotion Academic Symposium in 2020. Beijing, 2020(in Chinese).
    [19]
    叶展雯, 王平阳, 华志伟, 等. 碘工质电推进系统的储供设计及实验研究[J]. 推进技术, 2022, 43(9):451-458. Ye Z W, Wang P Y, Hua Z W, et al. Feeding design and experimental study of iodine electric propulsion system[J]. Journal of Propulsion Technology, 2022, 43(9):451-458(in Chinese).
    [20]
    叶展雯, 王平阳, 余盛楠. 工质储供系统设计及微流量特性研究[C]. 2020年(第十六届)中国电推进学术研讨会. 北京, 2020. Ye Z W, Wang P Y, Yu S N. Design of working fluid storage and supply system and research on micro flow characteristics[C]. The 16th China Electric Power Promotion Academic Symposium in 2020. Beijing, 2020(in Chinese).
    [21]
    Polzin K A, Seixal J F, Mauro S L, et al. The iodine satellite(iSat) propellant feed system-design and development[C]. 35th International Electric Propulsion Conference. Atlanta:IEPC, 2017.
    [22]
    Szabo J, Robin M, Paintal S, et al. Iodine propellant space propulsion[C]. 33rd International Electric Propulsion Conference. Washington:The George Washington University, 2013.
    [23]
    Tsay M, Frongillo J, Hohman K. Iodine-fueled mini RF ion thruster for CubeSat applications[C]. 34th International Electric Propulsion Conference, Kobe:IEPC, 2015.
    [24]
    NIST. NIST Chemistry WebBook[EB/OL].[2023-11-17]. https://webbook.nist.gov/chemistry/.
    [25]
    MatWeb. Material Property Data[EB/OL].[2023-11-25]. https://www.matweb.com/.
    [26]
    Lopez-Quiroga E, Antelo L T, Alonso A A. Time-scale modeling and optimal control of freeze-drying[J]. Journal of Food Engineering, 2012, 111(4):655-666.
    [27]
    Ravnik J, Golobič I, Sitar A, et al. Lyophilization model of mannitol water solution in a laboratory scale lyophilizer[J]. Journal of Drug Delivery Science and Technology, 2018, 45:28-38.
    [28]
    Modest M F, Mazumder S. Radiative heat transfer[M]. 4th ed. Amsterdam:Elsevier, 2021:9-266.
    [29]
    Szabo J, Pote B, Paintal S, et al. Performance evaluation of an iodine-vapor hall thruster[J]. Journal of Propulsion and Power, 2012, 28(4):848-857.
    [30]
    Fox R W, McDonald A T. Introduction to fluid mechanics[M]. New York:Wiley, 1985:360.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return