Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
SHU Chen, GU Futao, CHEN Bin, YAN Chenglong, TONG Yiheng, LIN Wei. Rotating Detonation Combustion Characteristics of Kerosene-Fueled Wide-Area Scramjets[J]. PHYSICS OF GASES, 2024, 9(2): 21-32. doi: 10.19527/j.cnki.2096-1642.1082
Citation: SHU Chen, GU Futao, CHEN Bin, YAN Chenglong, TONG Yiheng, LIN Wei. Rotating Detonation Combustion Characteristics of Kerosene-Fueled Wide-Area Scramjets[J]. PHYSICS OF GASES, 2024, 9(2): 21-32. doi: 10.19527/j.cnki.2096-1642.1082

Rotating Detonation Combustion Characteristics of Kerosene-Fueled Wide-Area Scramjets

doi: 10.19527/j.cnki.2096-1642.1082
  • Received Date: 24 Aug 2023
  • Revised Date: 04 Dec 2023
  • Through the method of three-dimensional numerical simulation, the rotating detonation combustion characteristics of kerosene-fueled scramjets in the range of Ma=3~7 were studied. In the flight condition of Ma=3, due to the poor effect of fuel atomization and evaporation, the detonation combustion of kerosene fuel cannot be realized. In the flight conditions of Ma=4, 5, 6, with the increase of Mach number, the number of wave heads increases gradually, which are single-wave, three-wave, and five-wave modes, respectively. However, the propagation speed gradually decreases. In the scramjet mode, the liquid fuel has a good effect of atomization and evaporation. Nevertheless, kerosene vapor remains in the flow field to varying degrees and is discharged from the combustion chamber without participating in the reaction. In the flight condition of Ma=7, the flow field will burn in a stationary detonation mode because the incoming flow is close to CJ velocity.

     

  • loading
  • [1]
    Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158. doi: 10.1016/j.proci.2012.10.005
    [2]
    秦亚欣. 旋转爆震发动机研制新进展[J]. 航空动力, 2022(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDL202203003.htm

    Qin Y X. New development progress of rotating detonation engine[J]. Aerospace Power, 2022(3): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDL202203003.htm
    [3]
    师迎晨, 张任帅, 计自飞, 等. 高速飞行器的连续旋转爆震推进技术[J]. 空气动力学学报, 2022, 40(1): 101-113. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202201010.htm

    Shi Y C, Zhang R S, Ji Z F, et al. Rotating detonation propulsion technology for high-speed aircrafts[J]. Acta Aerodynamica Sinica, 2022, 40(1): 101-113(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202201010.htm
    [4]
    Zhdan S A, Rybnikov A I. Continuous detonation in a supersonic flow of a hydrogen-oxygen mixture[J]. Combustion, Explosion, and Shock Waves, 2014, 50(5): 556-567. doi: 10.1134/S0010508214050116
    [5]
    Smirnov N N, Nikitin V F, Stamov L I, et al. Three-dimensional modeling of rotating detonation in a ramjet engine[J]. Acta Astronautica, 2019, 163: 168-176.
    [6]
    Wu K, Zhang S J, Luan M Y, et al. Effects of flow-field structures on the stability of rotating detonation ramjet engine[J]. Acta Astronautica, 2020, 168: 174-181. doi: 10.1016/j.actaastro.2019.12.022
    [7]
    王健平, 周蕊, 武丹. 连续旋转爆轰发动机的研究进展[J]. 实验流体力学, 2015, 29(4): 12-25. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm

    Wang J P, Zhou R, Wu D. Progress of continuously rotating detonation engine research[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 12-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201504002.htm
    [8]
    Meng H L, Xiao Q, Feng W K, et al. Air-breathing rotating detonation fueled by liquid kerosene in cavity-based annular combustor[J]. Aerospace Science and Technology, 2022, 122: 107407. doi: 10.1016/j.ast.2022.107407
    [9]
    Feng W K, Zheng Q, Xiao Q, et al. Effects of cavity length on operating characteristics of a ramjet rotating detonation engine fueled by liquid kerosene[J]. Fuel, 2023, 332: 126129. doi: 10.1016/j.fuel.2022.126129
    [10]
    王超, 郑榆山, 蔡建华, 等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学, 2022, 36(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm

    Wang C, Zheng Y S, Cai J H, et al. Direct connected experimental research on hydrocarbon-fueled rotating detonation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC202204001.htm
    [11]
    Zhou J P, Song F L, Xu S D, et al. Investigation of rotating detonation fueled by liquid kerosene[J]. Energies, 2022, 15(12): 4483. doi: 10.3390/en15124483
    [12]
    葛高杨, 马元, 侯世卓, 等. 当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究[J]. 爆炸与冲击, 2021, 41(11): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202111003.htm

    Ge G Y, Ma Y, Hou S Z, et al. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine[J]. Explosion and Shock Waves, 2021, 41(11): 21-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202111003.htm
    [13]
    Zheng Q, Meng H L, Weng C S, et al. Experimental research on the instability propagation characteristics of li-quid kerosene rotating detonation wave[J]. Defence Technology, 2020, 16(6): 1106-1115. doi: 10.1016/j.dt.2020.06.028
    [14]
    葛高杨, 马元, 夏镇娟, 等. 高总温空气与汽油燃料的旋转爆震验证试验[J]. 推进技术, 2022, 43(6): 213-223. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202206020.htm

    Ge G Y, Ma Y, Xia Z J, et al. Verification experiment of rotating detonation fueled by gasoline with high total temperature air[J]. Journal of Propulsion Technology, 2022, 43(6): 213-223(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202206020.htm
    [15]
    Xue S N, Ying Z J, Ma H, et al. Experimental investigation on two-phase rotating detonation fueled by kerosene in a hollow directed combustor[J]. Frontiers in Energy Research, 2022, 10: 951177. doi: 10.3389/fenrg.2022.951177
    [16]
    Zhao M J, Zhang H W. Rotating detonative combustion in partially pre-vaporized dilute n-heptane sprays: droplet size and equivalence ratio effects[J]. Fuel, 2021, 304: 121481. doi: 10.1016/j.fuel.2021.121481
    [17]
    Zhao M J, Zhang H W. Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures[J]. Fuel, 2020, 275: 117986. doi: 10.1016/j.fuel.2020.117986
    [18]
    Huang X X, Lin Z Y. Analysis of coupled-waves structure and propagation characteristics in hydrogen-assisted kerosene-air two-phase rotating detonation wave[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4868-4884. doi: 10.1016/j.ijhydene.2021.11.105
    [19]
    Yan C L, Shu C, Zhao J F, et al. Influences of thermal physical property parameters on operating characteristics of simulated rotating detonation ramjet fueled by C12H23[J]. AIP Advances, 2022, 12(11): 115309. doi: 10.1063/5.0101939
    [20]
    Yan C L, Zhao J F, Tong Y H, et al. Formation and evolution of the numerical air-breathing rotating detonation fueled by C12H23[J]. Combustion Science and Technology, 2023, 20: 30-31.
    [21]
    王超. 吸气式连续旋转爆震波自持传播机制研究[D]. 长沙: 国防科学技术大学, 2016.

    Wang C. Self-sustaining and propagation mechanism of airbreathing continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2016(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(2)

    Article Metrics

    Article views (115) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return