Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Turn off MathJax
Article Contents
LIU Jun, LIU Yu. Accuracy of MUSCL and WENO Schemes On Non-Uniform Structured Meshes[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1079
Citation: LIU Jun, LIU Yu. Accuracy of MUSCL and WENO Schemes On Non-Uniform Structured Meshes[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1079

Accuracy of MUSCL and WENO Schemes On Non-Uniform Structured Meshes

doi: 10.19527/j.cnki.2096-1642.1079
  • Received Date: 20 Aug 2023
  • Revised Date: 02 Jan 2024
  • Available Online: 04 Mar 2024
  • The difference schemes constructed on the basis of one-dimensional uniform grids must be extended to non-uniform or curvilinear grids in practical applications, and the coordinate transformation process introduces geometry-induced errors. The accuracy of the difference schemes is evaluated by the accuracy test, in which the convergence solution error varies with the grid refinement. In this paper, the first-order upwind scheme, the second-order MUSCL scheme and the fifth-order WENO scheme were used to calculate the uniform free flow problem with constant flow parameters on a two-dimensional cylindrical coordinate uniform grid system, and the slope of the convergence curve was compared according to the ac- curacy test method, and it was found that the grid convergence accuracy of the first-order upwind scheme was second order, and the grid convergence accuracy of the fifth-order WENO scheme was less than first order. Theoretical analysis shows that this accuracy test method is not equivalent to the definition of difference scheme accuracy, and the data used cannot reflect the inherent defects of the difference scheme. Therefore, it cannot be used as a criterion for evaluating the accuracy of the difference scheme. Many studies of WENO schemes often simulate benchmarks such as the double Mach reflection problem and the two-dimensional Riemann problem, and use whether the contact discontinuity develops into an unstable vortex structure as a characteristic of the algorithm with high accuracy, which can be theoretically proved to be a non-physical phenomenon, so it is not appropriate to use whether a vortex structure appears as an argument for the algorithm's high accuracy.

     

  • loading
  • [1]
    刘君, 邹东阳, 董海波. 基于非结构变形网格的间断装配法原理[J]. 气体物理, 2017, 2(1):13-20. Liu J, Zou D Y, Dong H B. Principle of new discontinuity fitting technique based on unstructured moving grid[J]. Physics of Gases, 2017, 2(1):13-20(in Chinese).
    [2]
    刘君, 邹东阳, 徐春光. 基于非结构动网格的非定常激波装配法[J]. 空气动力学学报, 2015, 33(1):10-16. Liu J, Zou D Y, Xu C G. An unsteady shock-fitting tech- nique based on unstructured moving grids[J]. Acta Aero- dynamica Sinica, 2015, 33(1):10-16(in Chinese).
    [3]
    刘君, 邹东阳, 董海波. 动态间断装配法模拟斜激波壁面反射[J]. 航空学报, 2016, 37(3):836-846. Liu J, Zou D Y, Dong H B. A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):836-846(in Chinese).
    [4]
    刘君, 韩芳. 有关有限差分高精度格式两个应用问题的讨论[J]. 空气动力学学报, 2020, 38(2):244-253. Liu J, Han F. Discussions on two problems in applications of high-order finite difference schemes[J]. Acta Aerody- namica Sinica, 2020, 38(2):244-253(in Chinese).
    [5]
    Chang S Y, Bai X, Zou D Y, et al. An adaptive disconti- nuity fitting technique on unstructured dynamic grids[J]. Shock Waves, 2019, 29(8):1103-1115.
    [6]
    刘君, 韩芳. 有限差分法中的贴体坐标变换[J]. 气体物理, 2018, 3(5):18-29. Liu J, Han F. Body-fitted coordinate transformation for fi- nite difference method[J]. Physics of Gases, 2018, 3(5):18-29(in Chinese).
    [7]
    刘君, 韩芳, 夏冰. 有限差分法中几何守恒律的机理及算法[J]. 空气动力学学报, 2018, 36(6):917-926. Liu J, Han F, Xia B. Mechanism and algorithm for geo- metric conservation law in finite difference method[J]. Acta Aerodynamica Sinica, 2018, 36(6):917-926(in Chinese).
    [8]
    刘君, 魏雁昕, 韩芳. 有限差分法的坐标变换诱导误差[J]. 航空学报, 2021, 42(6):124397. Liu J, Wei Y X, Han F. Coordinate transformation in- duced errors of finite difference method[J]. Acta Aero- nautica et Astronautica Sinica, 2021, 42(6):124397(in Chinese).
    [9]
    刘君, 韩芳, 魏雁昕. 特定条件下高阶WENO格式计算结果误差[J]. 航空学报, 2022, 43(2):124940. Liu J, Han F, Wei Y X. Numerical errors of high-order WENO schemes under specific conditions[J]. Acta Aero- nautica et Astronautica Sinica, 2022, 43(2):124940(in Chinese).
    [10]
    刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022, 43(3):125009. Liu J, Han F, Wei Y X. MUSCL and WENO schemes problems generated by dimension splitting approach[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):125009(in Chinese).
    [11]
    刘君. 有计算超声速流场的高精度格式么?[J]. 气动研究与试验, 2022, 34(1):2-14. Liu J. Is there a high order scheme for calculating super- sonic flow fields?[J]. Aerodynamic Research & Experi- ment, 2022, 34(1):2-14(in Chinese).
    [12]
    Roache P J. Verification and validation in computational science and engineering[M]. Albuquerque:Hermosa, 1998.
    [13]
    邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展, 2007, 37(2):279-288. Deng X G, Zong W G, Zhang L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288(in Chi- nese).
    [14]
    Roache P J, Ghia K N, White F M. Editorial policy statement on the control of numerical accuracy[J]. ASME Journal of Fluids Engineering, 1986, 108(1):2.
    [15]
    The Editorial Board. Editorial policy statement on numerical accuracy and experimental uncertainty[J]. AIAA Journal, 1994, 32(1):3.
    [16]
    The Editorial Board. Journal of heat transfer editorial policy statement on numerical accuracy[J]. ASME Journal of Heat Transfer, 1994, 116(4):797-798.
    [17]
    傅德熏, 马延文. 计算流体力学[M]. 北京:高等教育出版社, 2002.

    Fu D X, Ma Y W. Computational fluid dynamics[M]. Beijing:Higher Education Press, 2002.
    [18]
    任玉新, 陈海昕. 计算流体力学基础[M]. 北京:清华大学出版社, 2006.
    [19]
    吴子牛. 计算流体力学基本原理[M]. 北京:科学出版社, 2001.
    [20]
    Roy C J. Grid convergence error analysis for mixed-order numerical schemes[J]. AIAA Journal, 2003, 41(4):595-604.
    [21]
    Van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
    [22]
    Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
    [23]
    Shu C W. Essentially non-oscillatory and weighted essen- tially non-oscillatory schemes[J]. Acta Numerica, 2020, 29:701-762.
    [24]
    Gottlieb S, Shu C W. Total variation diminishing Runge- Kutta schemes[J]. Mathematics of Computation, 1998, 67(221):73-85.
    [25]
    刘君, 陈洁, 韩芳. 基于离散等价方程的非结构网格有限差分法[J]. 航空学报, 2020, 41(1):123248. Liu J, Chen J, Han F. Finite difference method for un- structured grid based on discrete equivalent equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123248(in Chinese).
    [26]
    Han F, Xu C G, Liu J. Improvement to a general metho- dology for free-stream preservation on curvilinear grids[J]. Physics of Fluids, 2022, 34(11):116111.
    [27]
    Deng X G, Min Y B, Mao M L, et al. Further studies on Geometric Conservation Law and applications to high- order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (17) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return