Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 9 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
ZHANG Chengjian, GUI Yuteng, LI Xueliang, CHENG Jiangyi, WU Jie. Effect of Wavy Wall on the Stability of Conical Hypersonic Boundary Layer at Small Angle of Attack[J]. PHYSICS OF GASES, 2024, 9(2): 66-80. doi: 10.19527/j.cnki.2096-1642.1078
Citation: ZHANG Chengjian, GUI Yuteng, LI Xueliang, CHENG Jiangyi, WU Jie. Effect of Wavy Wall on the Stability of Conical Hypersonic Boundary Layer at Small Angle of Attack[J]. PHYSICS OF GASES, 2024, 9(2): 66-80. doi: 10.19527/j.cnki.2096-1642.1078

Effect of Wavy Wall on the Stability of Conical Hypersonic Boundary Layer at Small Angle of Attack

doi: 10.19527/j.cnki.2096-1642.1078
  • Received Date: 18 Aug 2023
  • Revised Date: 25 Sep 2023
  • In order to obtain a high lift-drag ratio, hypersonic vehicles usually fly with a certain angle of attack. As a potential means to delay hypersonic boundary layer transition at 0° angle of attack, it is not clear how wavy wall affect the deve-lopment of instability waves with angles of attack. In order to study the influence of wavy wall on the development of instability waves in hypersonic boundary layer at small angle of attack, the stability of boundary layer was studied by adopting high-speed infrared camera and high-frequency pressure sensor (PCB) in Mach 6 Ludwieg tube wind tunnel. The development of instability waves along different azimuths and flow directions was analyzed. The experimental results show that the instability waves leading transition at 1° angle of attack are the second-mode waves. Under the condition of 1° angle of attack, the wavy wall has no delay effect on transition at 45° azimuth angle, but has a promotion effect at 90°, 135° and 180° azimuth angles.

     

  • loading
  • [1]
    Schneider S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences, 2004, 40(1/2): 1-50.
    [2]
    Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79-95.
    [3]
    Lee C, Chen S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1): 155-170.
    [4]
    陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 114701. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201911011.htm

    Chen J Q, Yuan X X, Tu G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica-Physica, Mechanica & Astronomica, 2019, 49(11): 114701(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201911011.htm
    [5]
    陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm

    Chen J Q, Tu G H, Zhang Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201703001.htm
    [6]
    Mack L M. Computation of the stability of the laminar boundary layer[J]. Methods of Computational Physics, 1965, 4: 247-299.
    [7]
    Kendall J M. Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3): 290-299.
    [8]
    Malik M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493.
    [9]
    Fedorov A, Shiplyuk A, Maslov A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479: 99-124.
    [10]
    Rasheed A, Hornung H G, Fedorov A V, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J]. AIAA Journal, 2002, 40(3): 481-489.
    [11]
    Zhu W K, Shi M T, Zhu Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1): 011701.
    [12]
    Gui Y T, Wang W Z, Zhao R, et al. Hypersonic boundary-layer instability characteristics on sharp cone with porous coating[J]. AIAA Journal, 2022, 60(7): 4453-4461.
    [13]
    Wagner A. Passive hypersonic boundary layer transition control using ultrasonically absorptive carbon-carbon ceramic with random microstructure[D]. Leuven: Katholieke Universiteit Leuven, 2014.
    [14]
    Fong K D, Wang X W, Huang Y, et al. Second mode suppression in hypersonic boundary layer by roughness: design and experiments[J]. AIAA Journal, 2015, 53(10): 3138-3144.
    [15]
    Cheng J Y, Huang R R, Liu W T, et al. Influence of single roughness element on hypersonic boundary-layer transition of cone[J]. AIAA Journal, 2023, 61(7): 3210-3218.
    [16]
    Fedorov A V, Soudakov V, Leyva I A. Stability analysis of high-speed boundary-layer flow with gas injection[R]. AIAA 2014-2498, 2014.
    [17]
    Jewell J, Wagnild R, Leyva I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures[R]. AIAA 2013-0523, 2013.
    [18]
    Wagnild R, Candler G, Leyva I, et al. Carbon dioxide injection for hypervelocity boundary layer stability[R]. AIAA 2010-1244, 2010.
    [19]
    Leyva I, Laurence S, Beierholm A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions[R]. AIAA 2009-1287, 2009.
    [20]
    Bountin D, Chimitov T, Maslov A, et al. Stabilization of a hypersonic boundary layer using a wavy surface[J]. AIAA Journal, 2013, 51(5): 1203-1210.
    [21]
    Fujii K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4): 731-738.
    [22]
    Si W F, Huang G L, Zhu Y D, et al. Hypersonic aerodynamic heating over a flared cone with wavy wall[J]. Physics of Fluids, 2019, 31(5): 051702.
    [23]
    Zhu W K, Gu D W, Si W F, et al. Instability evolution in the hypersonic boundary layer over a wavy wall[J]. Journal of Fluid Mechanics, 2022, 943: A16. doi: 10.1017/jfm.2022.437
    [24]
    Zhao J Q, Sima X H, Xiong Y D, et al. Impact of wavy wall surface on hypersonic boundary-layer instability of sharp cone model[J]. AIAA Journal, 2022, 60(11): 6203-6213. doi: 10.2514/1.J062035
    [25]
    Novikov A, Egorov I, Fedorov A. Direct numerical simulation of supersonic boundary layer stabilization using grooved wavy surface[R]. AIAA 2010-1245, 2010.
    [26]
    Bountin D A, Maslov A A. Analysis of the development of perturbations in a hypersonic boundary layer behind a wavy surface[J]. Technical Physics Letters, 2017, 43(7): 623-626. doi: 10.1134/S1063785017070021
    [27]
    Zhou Y L, Liu W, Chai Z X, et al. Numerical simulation of wavy surface effect on the stability of a hypersonic boundary layer[J]. Acta Astronautica, 2017, 140: 485-496.
    [28]
    Saric W, Reed H. Crossflow instabilities-theory & technology[R]. AIAA 2003-771, 2003.
    [29]
    Saric W S, Carpenter A L, Reed H L. Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1940): 1352-1364.
    [30]
    Lukashevich S V, Morozov S O, Shiplyuk A N. Passive porous coating effect on a hypersonic boundary layer on a sharp cone at small angle of attack[J]. Experiments in Fluids, 2018, 59(8): 130.
    [31]
    黄冉冉, 张成键, 李创创, 等. 华中科技大学Φ0.5 m马赫6 Ludwieg管风洞设计与流场初步校测[J]. 空气动力学学报, 2023, 41(1): 39-48, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202301003.htm

    Huang R R, Zhang C J, Li C C, et al. Design and preliminary freestream calibration of HUST Φ0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(1): 39-48, 85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202301003.htm
    [32]
    王猛, 李玉军, 赵荣奂, 等. 基于在线加热涂层的宽速域转捩探测技术[J]. 航空学报, 2022, 43(11): 526820. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202211011.htm

    Wang M, Li Y J, Zhao R H, et al. Transition detection technique for wide speed range by means of on-line heating coating[J]. Acta Aeronautica et Astronautica Sini-ca, 2022, 43(11): 526820(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202211011.htm
    [33]
    Mirómiró F, Dehairs P, Pinna F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal, 2019, 57(4): 1567-1578.
    [34]
    Marineau E C, Moraru G C, Lewis D R, et al. Mach 10 boundary layer transition experiments on sharp and blunted cones[R]. AIAA 2014-3108, 2014.
    [35]
    Liu X L, Yi S H, Niu H B, et al. Experimental investigation about the second-mode waves in hypersonic bounda-ry layer over a cone at small angle of attack[J]. Experimental Thermal and Fluid Science, 2020, 118: 110143.
    [36]
    Zhu W K, Lee C. Perturbation decomposition over a flared cone with a wavy wall[R]. AIAA 2022-3854, 2022.
    [37]
    霍俊杰, 易仕和, 牛海波, 等. 基于温敏漆技术的圆锥高超声速大攻角绕流背风面流动结构实验研究[J]. 气体物理, 2022, 7(4): 67-76. doi: 10.19527/j.cnki.2096-1642.0906

    Huo J J, Yi S H, Niu H B, et al. Experimental study of flow on the leeward side of a cone at a high angle of attack based on temperature sensitive paint[J]. Physics of Gases, 2022, 7(4): 67-76(in Chinese). doi: 10.19527/j.cnki.2096-1642.0906
    [38]
    韩宇峰, 马绍贤, 苏彩虹. 高超声速三维边界层横流转捩的数值研究[J]. 空气动力学学报, 2019, 37(4): 522-529. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904002.htm

    Han Y F, Ma S X, Su C H. Numerical study on cross-flow transition in three-dimensional hypersonic boundary layers[J]. Acta Aerodynamica Sinica, 2019, 37(4): 522-529(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201904002.htm
    [39]
    Moyes A J, Paredes P, Kocian T S, et al. Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone[J]. Journal of Fluid Mechanics, 2017, 812: 370-397.
    [40]
    Kocian T S, Moyes A J, Reed H L, et al. Hypersonic crossflow instability[J]. Journal of Spacecraft and Rockets, 2019, 56(2): 432-446.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (77) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return