Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Turn off MathJax
Article Contents
XIE Wei, HU Guo-tun, SHI Wei, ZHOU Yan, LU Hong-bo, LUO Zhen-bing. Experiment on Shock Wave Control of a Hypersonic Vehicle Standard Model Based on Plasma Synthetic Jet[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1065
Citation: XIE Wei, HU Guo-tun, SHI Wei, ZHOU Yan, LU Hong-bo, LUO Zhen-bing. Experiment on Shock Wave Control of a Hypersonic Vehicle Standard Model Based on Plasma Synthetic Jet[J]. PHYSICS OF GASES. doi: 10.19527/j.cnki.2096-1642.1065

Experiment on Shock Wave Control of a Hypersonic Vehicle Standard Model Based on Plasma Synthetic Jet

doi: 10.19527/j.cnki.2096-1642.1065
  • Received Date: 08 Jun 2023
  • Revised Date: 18 Jun 2023
  • Available Online: 21 Aug 2023
  • The novel active flow control technology based on plasma synthetic jet (PSJ) has great application potential in the field of shock wave control due to its advantages such as no gas source, strong control ability and wide excitation frequency band. The control effect of single-pulsed PSJ on head bow shock and wing shock of a hypersonic vehicle model and the drag reduction effect were experimentally studied in a hypersonic wind tunnel. The results show that the opposing PSJ can significantly increase the standoff distance of the head bow shock, and the transverse PSJ can basically eliminate the wing shock completely. The maximum instantaneous drag reduction rate of the vehicle measured by the dynamic force sensor is about 15.5%, but the drag change measured by the sensor has a delay of about 250 μs. The influence of discharge energy, incoming flow total pressure, exit diameter and cavity volume on the control effect of the head bow shock was also studied.

     

  • loading
  • [1]
    Bushnell D M. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36:81-96.
    [2]
    罗振兵,夏智勋,王林,等.高超声速飞行器内外流 主动流动控制[M].北京:科学出版社, 2019:1-8. Luo Z B, Xia Z X, Wang L, et al. Active flow control technology for internal and external flow of hypersonic vehicle[M]. Beijing:Science Press, 2019:1-8(in Chinese).
    [3]
    黄伟,李世斌,颜力,等.空间任务飞行器减阻防热 新方法及其应用[M].北京:科学出版社, 2021: 1-38. Huang W, Li S B, Yan L, et al. New methods for reducing drag and heat of space mission vehicle and its application[M]. Beijing:Science Press, 2021:1-38(in Chinese).
    [4]
    Huang W, Chen Z, Yan L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows:a review[J]. Progress in Aerospace Sciences, 2019, 105:31-39.
    [5]
    Alberti A, Munafò A, Pantano C, et al. Self-consistent computational fluid dynamics of supersonic drag reduction via upstream-focused laser-energy deposition[J]. AIAA Journal, 2021, 59(4):1214-1224.
    [6]
    韩路阳,王斌,蒲亮,等.能量沉积减阻技术机理及 相关问题研究进展[J].航空学报, 2022, 43(9): 026032. Han L Y, Wang B, Pu L, et al. Research progress on mechanism and related problems of energy deposition drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):026032(in Chinese).
    [7]
    王殿恺,文明,王伟东,等.脉冲激光与正激波相互 作用过程和减阻机理的实验研究[J].力学学报, 2018, 50(6):1337-1345. Wang D K, Wen M, Wang W D, et al. Experimental study on process and mechanisms of wave drag reduction during pulsed laser interacting with shock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (6):1337-1345(in Chinese).
    [8]
    Sharma K, Nair M T. Combination of counterflow jet and cavity for heat flux and drag reduction[J]. Physics of Fluids, 2020, 32(5):056107.
    [9]
    王泽江,李杰,曾学军,等.逆向喷流对双锥导弹外 形减阻特性的影响[J].航空学报, 2020, 41(12): 124116. Wang Z J, Li J, Zeng X J, et al. Effect of an opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):124116(in Chinese).
    [10]
    Cattafesta III L N, Sheplak M. Actuators for active flow control[J]. Annual Review of Fluid Mechanics, 2011, 43:247-272.
    [11]
    Wang J J, Choi K S, Feng L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62:52-78.
    [12]
    Zhang X, Zhao Y G, Yang C. Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage power[J]. Chinese Journal of Aeronautics, 2023, 36(1): 1-21.
    [13]
    张鑫,王勋年.正弦交流介质阻挡放电等离子体激励 器诱导流场研究的进展与展望[J].力学学报, 2023, 55(2):285-298. Zhang X, Wang X N. Research progress and outlook of flow field created by dielectric barrier discharge plasma actuators driven by a sinusoidal alternating current highvoltage power[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2):285-298(in Chinese).
    [14]
    赵志杰,罗振兵,刘杰夫,等.基于分布式合成双射 流的飞行器无舵面三轴姿态控制飞行试验[J].力学 学报, 2022, 54(5):1220-1228. Zhao Z J, Luo Z B, Liu J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5):12201228(in Chinese).
    [15]
    Grossman K R, Cybyk B Z, VanWie D M. Sparkjet actuators for flow control[R]. AIAA 2003-57, 2003.
    [16]
    周岩,罗振兵,王林,等.等离子体合成射流激励器 及其流动控制技术研究进展[J].航空学报, 2022, 43 (3):25027. Zhou Y, Luo Z B, Wang L, et al. Plasma synthetic jet actuator for flow control:Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):25027(in Chinese).
    [17]
    Zong H H, Chiatto M, Kotsonis M, et al. Plasma synthetic jet actuators for active flow control[J]. Actuators, 2018, 7(4):77.
    [18]
    Tang M X, Wu Y, Zong H H, et al. Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array[J]. Journal of Fluid Mechanics, 2022, 931:A16.
    [19]
    罗凯,汪球,李逸翔,等.基于高温气体效应的磁流 体流动控制研究进展[J].力学学报, 2021, 53(6): 1515-1531. Luo K, Wang Q, Li Y X, et al. Research progress on magnetohydrodynamic flow control under test conditions with high temperature real gas effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531(in Chinese).
    [20]
    Xie W, Luo Z B, Zhou Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188:416-425.
    [21]
    Zhou Y, Xia Z X, Luo Z B, et al. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control[J]. Acta Astronautica, 2017, 133:95-102.
    [22]
    Narayanaswamy V, Raja L L, Clemens N T. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator[J]. AIAA Journal, 2012, 50(1):246-249.
    [23]
    Greene B R, Clemens N T, Magari P, et al. Control of mean separation in shock boundary layer interaction using pulsed plasma jets[J]. Shock Waves, 2015, 25(5): 495-505.
    [24]
    Wang P, Shen C B. Characteristics of mixing enhancement achieved using a pulsed plasma synthetic jet in a supersonic flow[J]. Journal of Zhejiang University-Science A, 2019, 20(9):701-713.
    [25]
    Zhou Y, Xia Z X, Luo Z B, et al. Effect of three-electrode plasma synthetic jet actuator on shock wave control [J]. Science China Technological Sciences, 2017, 60 (1):150-156.
    [26]
    Liu R B, Lin R X, Lian G C, et al. Multichannel plasma synthetic jet actuator driven by Marx high-voltage generator [J]. AIAA Journal, 2021, 59(9):3417-3430.
    [27]
    Popkin S H, Cybyk B Z, Foster C H, et al. Experimental estimation of SparkJet efficiency[J]. AIAA Journal, 2016, 54(6):1831-1845.
    [28]
    Geng X, Zhang W L, Shi Z W, et al. Experimental study on frequency characteristics of the actuations produced by plasma synthetic jet actuator and its geometric effects[J]. Physics of Fluids, 2021, 33(6):067113.
    [29]
    Wang H Y, Li J, Jin D, et al. High-frequency counterflow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142:45-56.
    [30]
    陈加政,胡国暾,樊国超,等.等离子体合成射流对 钝头激波的控制与减阻[J].航空学报, 2021, 42(7): 124773. Chen J Z, Hu G T, Fan G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773(in Chinese).
    [31]
    Xie W, Luo Z B, Zhou Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35(8):75-91.
    [32]
    Xie W, Luo Z B, Hou L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9):096104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (59) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return