Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 8 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
TENG Hong-hui, NIU Shu-zhen, YANG Peng-fei, ZHOU Lin, WANG Kuan-liang. Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows[J]. PHYSICS OF GASES, 2023, 8(5): 1-9. doi: 10.19527/j.cnki.2096-1642.1033
Citation: TENG Hong-hui, NIU Shu-zhen, YANG Peng-fei, ZHOU Lin, WANG Kuan-liang. Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows[J]. PHYSICS OF GASES, 2023, 8(5): 1-9. doi: 10.19527/j.cnki.2096-1642.1033

Dynamic Response Characteristics of Oblique Detonation Waves in Non-Uniform Inflows

doi: 10.19527/j.cnki.2096-1642.1033
  • Received Date: 04 Jan 2023
  • Revised Date: 06 Feb 2023
  • In propulsion systems based on oblique detonation waves (ODWs), the airflow compressed by the inlet still has a very high velocity and the complete mixing of fuel and airflow is unattainable, which thus has a huge effect on wave systems of oblique detonations. In this paper, the ODWs in non-uniform inflows were considered as the object. By means of the evolutions of wave angles and displacement distances of wave front, the disturbance characteristics of ODWs were studied using the Euler equations coupled with the hydrogen-air detailed reaction model. The equivalence ratio was chosen as the representation variable of nonuniformity, and a disturbance region with a varying height was introduced into the incoming flow. The symbol φA was defined as the disturbance amplitude and the equivalence ratio distribution in the disturbance region was modeled using the sinusoidal function. It is found that with the decrease of φA, the wave angle decreases and the wave front moves downstream, the opposite trend is observed when the equivalence ratio increases. When φA is negative and small enough, a novel phenomenon characterized by the abrupt change of wave angle can be observed. Further analyses show that this phenomenon is due to ODW re-initiation under the influence of non-uniform equivalent ratio. When φA is posi-tive and large enough, the ODW angle of the disturbance region is in a non-equilibrium state. A larger equivalence ratio gradient results in a higher value than the theoretical wave front angle, while a smaller equivalent ratio gradient has a lower value than the theoretical one. Quantitative analyses of wave front positions show that the displacement distance of the wave front with φA is nonlinear when φA is positive, and linear when φA is negative. Meanwhile, the displacement distance is linear with the height of the disturbance region.

     

  • loading
  • [1]
    Jiang Z L, Zhang Z J, Liu Y F, et al. Criteria for hypersonic airbreathing propulsion and its experimental verifi-cation[J]. Chinese Journal of Aeronautics, 2021, 34(3): 94-104. doi: 10.1016/j.cja.2020.11.001
    [2]
    Rosato D A, Thornton M, Sosa J, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2102244118.
    [3]
    滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学: 物理学力学天文学, 2020, 50(9): 090008. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202009009.htm

    Teng H H, Yang P F, Zhang Y N, et al. Flow and combustion mechanism of oblique detonation engines[J]. Scien-tia Sinica-Physica, Mechanica & Astronomica, 2020, 50(9): 090008 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202009009.htm
    [4]
    Li C P, Kailasanath K, Oran E S. Detonation structures behind oblique shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. doi: 10.1063/1.868273
    [5]
    Broda J C. An experimental study of oblique detonation waves[D]. Connecticut: University of Connecticut, 1993.
    [6]
    Viguier C, Guerraud C, Debordes D. H2-air and CH4-air detonations and combustions behind oblique shock waves[J]. Symposium (International) on Combustion, 1994, 25(1): 53-59. doi: 10.1016/S0082-0784(06)80627-2
    [7]
    Figueria da Silva L F, Deshaies B. Stabilization of an oblique detonation wave by a wedge: a parametric numerical study[J]. Combustion and Flame, 2000, 121(1/2): 152-166.
    [8]
    Teng H H, Jiang Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. doi: 10.1017/jfm.2012.478
    [9]
    Teng H H, Tian C, Zhang Y N, et al. Morphology of oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Journal of Fluid Mechanics, 2021, 913: A1. doi: 10.1017/jfm.2020.1131
    [10]
    Wang K L, Zhang Z J, Yang P F, et al. Numerical study on reflection of an oblique detonation wave on an outward turning wall[J]. Physics of Fluids, 2020, 32(4): 046101. doi: 10.1063/5.0001845
    [11]
    Wang K L, Teng H H, Yang P F, et al. Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner[J]. Journal of Fluid Mechanics, 2020, 903: A28. doi: 10.1017/jfm.2020.644
    [12]
    Sislian J P, Dudebout R, Schumacher J, et al. Incomplete mixing and off-design effects on shock-induced combustion ramjet performance[J]. Journal of Propulsion and Power, 2000, 16(1): 41-48. doi: 10.2514/2.5529
    [13]
    Alexander D C, Sislian J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
    [14]
    Chan J, Sislian J P, Alexander D. Numerically simulated comparative performance of a scramjet and shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. doi: 10.2514/1.48144
    [15]
    Iwata K, Nakaya S, Tsue M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769. doi: 10.1016/j.proci.2016.06.094
    [16]
    Iwata K, Imamura O, Akihama K, et al. Numerical study of self-sustained oblique detonation in a non-uniform mixture[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3651-3659. doi: 10.1016/j.proci.2020.07.070
    [17]
    Fang Y S, Hu Z M, Teng H H, et al. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. doi: 10.1016/j.ast.2017.09.027
    [18]
    涂胜甲. 斜爆震发动机燃料喷注掺混及"圆台型"斜爆震燃烧特性研究[D]. 北京: 中国航天科工集团第三研究院, 2022.

    Tu S J. Study on fuel injection and mixing in oblique deto-nation engine and combustion characteristics of "frustum of a cone" ODW[D]. The Third Academy of China Aerospace Science and Industry Corporation Limited, 2022 (in Chinese).
    [19]
    Lee J H S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16: 311-336. doi: 10.1146/annurev.fl.16.010184.001523
    [20]
    Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593-627. doi: 10.1146/annurev-fluid-122316-045217
    [21]
    Mazaheri K, Mahmoudi Y, Radulescu M I. Diffusion and hydrodynamic instabilities in gaseous detonations[J]. Combustion and Flame, 2012, 159(6): 2138-2154. doi: 10.1016/j.combustflame.2012.01.024
    [22]
    McBride B J, Zehe M J, Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species[R]. NASA/TP-2002-211556, 2002.
    [23]
    Burke M P, Chaos M, Ju Y G, et al. Comprehensive H2/O2 kinetic model for high-pressure combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7): 444-474. doi: 10.1002/kin.20603
    [24]
    Jiang Z L. On dispersion-controlled principles for non-oscillatory shock-capturing schemes[J]. Acta Mechanica Sinica, 2004, 20(1): 1-15. doi: 10.1007/BF02493566
    [25]
    Ng H D, Lee J H S. Direct initiation of detonation with a multi-step reaction scheme[J]. Journal of Fluid Mechanics, 2003, 476: 179-211. doi: 10.1017/S0022112002002872
    [26]
    滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展, 2020, 50(1): 202002. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202000002.htm

    Teng H H, Jiang Z L. Progress in multi-wave structure and stability of oblique detonations[J]. Advances in Mechanics, 2020, 50(1): 202002 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ202000002.htm
    [27]
    杨鹏飞, 张子健, 杨瑞鑫, 等. 斜爆轰发动机的推力性能理论分析[J]. 力学学报, 2021, 53(10): 2853-2864. doi: 10.6052/0459-1879-21-206

    Yang P F, Zhang Z J, Yang R X, et al. Theorical study on propulsive performance of oblique detonation engine[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2853-2864 (in Chinese). doi: 10.6052/0459-1879-21-206
    [28]
    Zhang Y N, Gong J S, Wang T. Numerical study on initia-tion of oblique detonations in hydrogen-air mixtures with various equivalence ratios[J]. Aerospace Science and Technology, 2016, 49: 130-134. doi: 10.1016/j.ast.2015.11.035
    [29]
    Kaneshige M, Shepherd J E. Detonation database. Technical Report FM97-8, GALCIT, 1997[EB/OL]. http://www.galcit.caltech.edu/detn_db/html/.
    [30]
    Teng H H, Dick N H, Jiang Z L. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(12): 2735-2742.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (103) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return