Processing math: 100%
Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
GAO Yu-chao, CHU Wei, KANG Jin-xin, et al. Experiment and Three-Dimensional Simulation of Gas-Centered Swirl Coaxial Injector Spray[J]. PHYSICS OF GASES, 2023, 8(2): 66-80. DOI: 10.19527/j.cnki.2096-1642.1013
Citation: GAO Yu-chao, CHU Wei, KANG Jin-xin, et al. Experiment and Three-Dimensional Simulation of Gas-Centered Swirl Coaxial Injector Spray[J]. PHYSICS OF GASES, 2023, 8(2): 66-80. DOI: 10.19527/j.cnki.2096-1642.1013

Experiment and Three-Dimensional Simulation of Gas-Centered Swirl Coaxial Injector Spray

More Information
  • Received Date: September 07, 2022
  • Revised Date: October 18, 2022
  • On the basis of experiments at atmospheric pressure, a three-dimensional simulation study of the spray pattern and breakup mode of gas-centered swirl coaxial (GCSC) injector was conducted with the RNG k-ε model. The gas-liquid interface was captured by the adaptive mesh refinement (AMR) technique, coupled level-set and volume of fluid (CLSVOF) method. The results demonstrated that when the liquid mass flow rate (˙ml) is constant, the ejection action of the central airflow is enhanced along with the gas mass flow rate (˙mg). The internal and external pressure difference of the liquid film increases and the spray angle decreases. Meanwhile, the flow characteristics were analyzed. When ˙mg is constant, the radial velocity and tangential velocity of the liquid film at the injector outlet increase with ˙ml, which may result in the increase of the spray angle. According to the gas-liquid mass flow rate (GLR), the breakup modes of spray are divided into the perforation breakup, bubble breakup and pneumatic breakup.
  • [1]
    Sutton G P. History of liquid propellant rocket engines in the united states[J]. Journal of Propulsion and Power, 2003, 19(6): 978-1007. DOI: 10.2514/2.6942
    [2]
    刘阳阳, 何国强, 魏祥庚, 等. 内直外旋气液同轴式喷嘴流量及雾化特性[J]. 推进技术, 2016, 37(7): 1280-1286. DOI: 10.13675/j.cnki.tjjs.2016.07.011

    Liu Y Y, He G Q, Wei X G, et al. Flow rate and spray characteristics of gas centered swirl gas-liquid coaxial injector[J]. Journal of Propulsion Technology, 2016, 37(7): 1280-1286 (in Chinese). DOI: 10.13675/j.cnki.tjjs.2016.07.011
    [3]
    康忠涛. 气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D]. 长沙: 国防科学技术大学, 2016.

    Kang Z T. The unsteady atomization mechanism and combustion characteristics of gas-liquid swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
    [4]
    Im J H, Cho S, Yoon Y, et al. Comparative study of spray characteristics of gas-centered and liquid-centered swirl coaxial injectors[J]. Journal of Propulsion and Power, 2010, 26(6): 1196-1204. DOI: 10.2514/1.48436
    [5]
    Cohn R K, Strakey P A, Bates R W, et al. Swirl coaxial injector development[R]. AIAA 2003-125, 2003.
    [6]
    张蒙正, 李鳌, 李进贤, 等. 气/液同轴离心式喷嘴流量及雾化特性实验[J]. 推进技术, 2004, 25(1): 19-22. DOI: 10.3321/j.issn:1001-4055.2004.01.006

    Zhang M Z, Li A, Li J X, et al. Experimental study on flow rate and spray characteristic of coaxial centrifugal injector[J]. Journal of Propulsion Technology, 2004, 25(1): 19-22 (in Chinese). DOI: 10.3321/j.issn:1001-4055.2004.01.006
    [7]
    Lightfoot M D, Danczyk S A, Talley D G. Atomization in gas-centered swirl-coaxial injectors[C]. 19th Annual Conference on Liquid Atomization and Spray Systems. Toronto: ILASS Americas, 2006: 1-12.
    [8]
    Lightfoot M D, Danczyk S A, Talley D G. Atomization rate of gas-centered swirl-coaxial injectors[C]. 21st Annual Conference on Liquid Atomization and Spray Systems. Orlando: ILASS Americas, 2008: 1-8.
    [9]
    Jeon J, Hong M, Han Y M, et al. Experimental study on spray characteristics of gas-centered swirl coaxial injectors[J]. Journal of Fluids Engineering, 2011, 133(12): 121303. DOI: 10.1115/1.4005344
    [10]
    Sivakumar D, Kulkarni V. Regimes of spray formation in gas-centered swirl coaxial atomizers[J]. Experiments in Fluids, 2011, 51(3): 587-596. DOI: 10.1007/s00348-011-1073-7
    [11]
    Kim J G, Han Y M, Choi H S, et al. Study on spray patterns of gas-centered swirl coaxial (GCSC) injectors in high pressure conditions[J]. Aerospace Science and Technology, 2013, 27(1): 171-178. DOI: 10.1016/j.ast.2012.08.004
    [12]
    Hong M, Matas J P, Marty S, et al. A study of the internal two-phase flow in gas-centered swirl coaxial injectors[C]. 8th International Conference on Multiphase Flow. Jeju: ICMF, 2013: 272.
    [13]
    Park G, Lee I, Lee J, et al. Measurement of film thickness in gas-centered swirl coaxial injectors[R]. AIAA 2014-3411, 2014.
    [14]
    Matas J P, Hong M, Cartellier A. Stability of a swirled liquid film entrained by a fast gas stream[J]. Physics of Fluids, 2014, 26(4): 042108. DOI: 10.1063/1.4871395
    [15]
    徐顺. 气体中心型气液同轴离心式喷嘴动态雾化特性研究[D]. 长沙: 国防科学技术大学, 2016.

    Xu S. Research on the dynamic spray characteristics of the gas-centered swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
    [16]
    Park G, Lee J, Oh S, et al. Characteristics of gas-centered swirl coaxial injector with acoustic excitation of gas flow[J]. AIAA Journal, 2016, 55(3): 1-8.
    [17]
    Park G, Oh S, Yoon Y, et al. Characteristics of gas-centered swirl-coaxial injector with liquid flow excitation[J]. Journal of Propulsion and Power, 2019, 35(3): 624-631. DOI: 10.2514/1.B36647
    [18]
    Joseph A, Sakthikumar R, Sivakumar D. Experimental characterization of sprays in a recessed gas-centered swirl coaxial atomizer[J]. Journal of Fluids Engineering, 2020, 142(4): 041206. DOI: 10.1115/1.4045986
    [19]
    Sahoo S K, Gadgil H. Dynamics of self-pulsation in gas-centered swirl coaxial injector: an experimental study[J]. Journal of Propulsion and Power, 2021, 37(3): 450-462. DOI: 10.2514/1.B38043
    [20]
    Sahoo S K, Gadgil H. Large scale unsteadiness during self-pulsation regime in a swirl coaxial injector and its influence on the downstream spray statistics[J]. International Journal of Multiphase Flow, 2022, 149: 103944. DOI: 10.1016/j.ijmultiphaseflow.2021.103944
    [21]
    Canino J V, Heister S D, Garrison L A. Hydrodynamic modeling of oxidizer-rich staged combustion injector flow[C]. JANNAF (Joint Army Navy NASA Air Force) Joint Propulsion Meeting. Monterey, CA: ACM Press, 2004: 1-11.
    [22]
    Kim B D, Heister S D. Numerical modeling of hydrodynamic instability of swirl coaxial injector in a recessed region[R]. AIAA 2006-4720, 2006.
    [23]
    Trask N, Perot J B, Schmidt D P, et al. Modeling of the internal two-phase flow in a gas-centered swirl coaxial fuel injector[R]. AIAA 2010-95, 2010.
    [24]
    Villasmil L A, Danczyk S, Lightfoot M, et al. Numerical simulations of gas-centered swirl-coaxial injectors for rocket engine applications. Evaluating the ability of "standard" turbulence models in capturing the complex nature of spray atomization[R]. AIAA 2016-4392, 2016.
    [25]
    Son J, Sohn C H, Park G, et al. Spray patterns and injection characteristics of gas-centered swirl coaxial injectors[J]. Journal of Aerospace Engineering, 2017, 30(5): 04017035. DOI: 10.1061/(ASCE)AS.1943-5525.0000745
    [26]
    Zhang L W, Wang X J, Li Y X, et al. Supercritical fluid flow dynamics and mixing in gas-centered liquid-swirl coaxial injectors[J]. Physics of Fluids, 2018, 30(7): 075106. DOI: 10.1063/1.5026786
    [27]
    Wang X J, Zhang L W, Li Y X, et al. Supercritical combustion of gas-centered liquid-swirl coaxial injectors for staged-combustion engines[J]. Combustion and Flame, 2018, 197: 204-214. DOI: 10.1016/j.combustflame.2018.07.018
    [28]
    Wang X J, Wang Y X, Yang V. Three-dimensional flow dynamics and mixing in a gas-centered liquid-swirl coaxial injector at supercritical pressure[J]. Physics of Fluids, 2019, 31(6): 065109. DOI: 10.1063/1.5097163
    [29]
    Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding[C]. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007. New Orleans, LA: Society for Industrial and Applied Mathematics, 2007: 1027-1035.
    [30]
    罗惕乾. 流体力学[M]. 4版. 北京: 机械工业出版社, 2017: 224.

    Luo T Q. Fluid mechanics[M]. 4th ed. Beijing: China Machine Press, 2017: 224 (in Chinese).
    [31]
    白晓. 气液同轴离心式喷嘴自激振荡过程及对喷雾燃烧特性的影响研究[D]. 长沙: 国防科学技术大学, 2020.

    Bai X. The self-pulsation and its effects on spray combustion characteristics for gas-liquid swirl coaxial injector[D]. Changsha: National University of Defense Technology, 2020 (in Chinese).
    [32]
    王凯, 杨国华, 李鹏飞, 等. 离心式喷嘴内部流动过程数值仿真分析[J]. 火箭推进, 2016, 42(4): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201604003.htm

    Wang K, Yang G H, Li P F, et al. Numerical simulation of internal flow process in pressure swirl injector[J]. Journal of Rocket Propulsion, 2016, 42(4): 14-20 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJTJ201604003.htm
    [33]
    Chu W, Li X Q, Tong Y H, et al. Numerical investigation of the effects of gas-liquid ratio on the spray characteristics of liquid-centered swirl coaxial injectors[J]. Acta Astronautica, 2020, 175: 204-215. DOI: 10.1016/j.actaastro.2020.05.050
    [34]
    Donjat D, Estivalezes J L, Michau M. A description of the pressure swirl atomizer internal flow[C]. ASME 2002 Joint U.S. -European Fluids Engineering Division Conference. Montreal: ASME, 2002: 439-444.
    [35]
    Ibrahim A A. Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer[D]. Cincinnati: University of Cincinnati, 2006.
    [36]
    Xie K C, Mao R H, Zhu Y, et al. Numerical simulation of the flow characteristics within a pressure-swirling atomizer[C]. Proceedings of ASME Turbo Expo2014: Turbine Technical Conference and Exposition. Düsseldorf, Germany: ASME, 2014: V04BT04A040.
    [37]
    张永良. 离心喷嘴雾化特性实验研究和数值模拟[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013.

    Zhang Y L. Experiment and numerical studies on the atomization of a pressure atomizer[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2013 (in Chinese).
    [38]
    王丽雯. 蒸汽-喷雾液膜直接接触冷凝过程二维数值模拟[D]. 天津: 天津大学, 2016.

    Wang L W. 2D numerical simulation of heat and mass transfer in direct contact condensation of vapor to subcooled water spray[D]. Tianjin: Tianjin University, 2016 (in Chinese).
    [39]
    Beune A, Kuerten J G, van Heumen M P. CFD analysis with fluid-structure interaction of opening high-pressure safety valves[J]. Computers & Fluids, 2012, 64: 108-116.
    [40]
    Tauseef S M, Rashtchian D, Abbasi S A. CFD-based simulation of dense gas dispersion in presence of obstacles[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 371-376. DOI: 10.1016/j.jlp.2011.01.014
    [41]
    于陆军, 曹久莹, 马宇明, 等. 横板型稳压罐气液两相流场数值模拟及流量稳定性研究[J]. 计量学报, 2020, 41(6): 729-734. DOI: 10.3969/j.issn.1000-1158.2020.06.16

    Yu L J, Cao J Y, Ma Y M, et al. Numerical simulation on gas-liquid two-phase flow field in the horizontal-baffle type surge tank and study on the flow stability[J]. Acta Metrologica Sinica, 2020, 41(6): 729-734 (in Chinese). DOI: 10.3969/j.issn.1000-1158.2020.06.16
    [42]
    王雷, 方斌, 王光彩. 基于大涡模拟的离心式喷嘴雾化过程研究[J]. 推进技术, 2021, 42(8): 1855-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202108020.htm

    Wang L, Fang B, Wang G C. Process of pressure swirl nozzle atomization based on large eddy simulation[J]. Journal of Propulsion Technology, 2021, 42(8): 1855-1864 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202108020.htm
    [43]
    Fuster D, Bagué A, Boeck T, et al. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method[J]. International Journal of Multiphase Flow, 2009, 35(6): 550-565. DOI: 10.1016/j.ijmultiphaseflow.2009.02.014
    [44]
    殷亚军, 李阳东, 涂志新, 等. 基于八叉树自适应网格技术的level set运动界面追踪方法[J]. 化工学报, 2016, 67(11): 4732-4741. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201611025.htm

    Yin Y J, Li Y D, Tu Z X, et al. Interface capturing method based on level set with octree adaptive mesh technology[J]. CIESC Journal, 2016, 67(11): 4732-4741 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201611025.htm
    [45]
    李佳楠, 雷凡培, 周立新, 等. 偏心撞击对撞击式喷嘴雾化特性的影响[J]. 航空动力学报, 2019, 34(10): 2280-2293. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201910022.htm

    Li J N, Lei F P, Zhou L X, et al. Effects of misaligned impingement on atomization characteristics of impinging jet injector[J]. Journal of Aerospace Power, 2019, 34(10): 2280-2293 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201910022.htm
    [46]
    Ding J W, Li G X, Yu Y S. Numerical investigation on liquid sheets interaction characteristics of liquid-liquid coaxial swirling jets in bipropellant thruster[J]. International Journal of Heat and Fluid Flow, 2016, 62: 129-137. DOI: 10.1016/j.ijheatfluidflow.2016.11.008
    [47]
    刘日超, 乐嘉陵, 杨顺华, 等. 亚声速横向气流中液体射流破碎过程的直接模拟[J]. 推进技术, 2016, 37(11): 2135-2141. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201611018.htm

    Liu R C, Le J L, Yang S H, et al. Direct numerical si- mulations of atomization processes of liquid jet in subsonic cross-flow[J]. Journal of Propulsion Technology, 2016, 37(11): 2135-2141 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201611018.htm

Catalog

    Article Metrics

    Article views (160) PDF downloads (34) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return