Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
YANG Xiao-nan, SU Cai-hong. Reliability of the eN Method Applied to Hypersonic Blunt Cone Boundary Layers for Transition Prediction[J]. PHYSICS OF GASES, 2023, 8(2): 44-55. doi: 10.19527/j.cnki.2096-1642.0987
Citation: YANG Xiao-nan, SU Cai-hong. Reliability of the eN Method Applied to Hypersonic Blunt Cone Boundary Layers for Transition Prediction[J]. PHYSICS OF GASES, 2023, 8(2): 44-55. doi: 10.19527/j.cnki.2096-1642.0987

Reliability of the eN Method Applied to Hypersonic Blunt Cone Boundary Layers for Transition Prediction

doi: 10.19527/j.cnki.2096-1642.0987
  • Received Date: 25 Apr 2022
  • Revised Date: 05 May 2022
  • The eN method predicts transition based on the level of the linear amplitude amplification of the disturbances in the boundary layer. Boundary layers over cones at Mach 6 were investigated with different nose bluntness and under different wall temperature conditions. Combined with direct numerical simulation (DNS) and parabolized stability equations (PSE), from the viewpoint whether the eN method is able to accurately describe the amplification of the disturbances in the above boundary layers, its reliability for transition prediction was interrogated. Results show that in the cases of small bluntness or high wall temperature, the disturbances undergo the intermodal exchange from the first mode to the second mode when travelling downstream in the boundary layer, so that the eN method based on linear stability theory becomes less reliable. Under the same wall temperature condition, as the nose bluntness increases, the eN method is more reliable. For the same nose bluntness, as the wall temperature decreases, the eN method is more reliable. Since linear stability theory always underestimates the amplification of the disturbances when there is an intermodal exchange, for the given transition criterion NT, which could be calibrated by a certain case, as the bluntness decreases or the wall temperature increases to some extent, the eN method tends to produce a further downstream transition location than reality. To recalibrate the transition criterion, the smaller the nose bluntness or the higher the wall temperature, the larger the modification of NT factor.

     

  • loading
  • [1]
    Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6/7): 511-536.
    [2]
    叶友达, 张涵信, 蒋勤学, 等. 近空间高超声速飞行器气动特性研究的若干关键问题[J]. 力学学报, 2018, 50(6): 1292-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201806004.htm

    Ye Y D, Zhang H X, Jiang Q X, et al. Some key problems in the study of aerodynamic characteristics of near-space hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanic, 2018, 50(6): 1292-1310 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201806004.htm
    [3]
    Reshotko E. Is Reθ/Me a meaningful transition criterion?[J]. AIAA Journal, 2007, 45(7): 1441-1443. doi: 10.2514/1.29952
    [4]
    Langtry R B, Menter F R. Transition modeling for general CFD applications in aeronautics[R]. AIAA 2005-522, 2005.
    [5]
    Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables-Part Ⅰ: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422. doi: 10.1115/1.2184352
    [6]
    Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables-Part Ⅱ: test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3): 423-434. doi: 10.1115/1.2184353
    [7]
    Smith A M, Gamberoni N. Transition, pressure gradient and stability theory[R]. Douglas Aircraft Report ES-26388, 1956.
    [8]
    van Ingen J L. A suggested semi-empirical method for the calculation of the boundary layer transition region[R]. Technical Report VTH-74, 1956.
    [9]
    Fischer J S, Soemarwoto B I, van der Weide, et al. Automatic transition prediction in a Navier-Stokes solver using linear stability theory[J]. AIAA Journal, 2021, 59(7): 2409-2426. doi: 10.2514/1.J059910
    [10]
    罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm

    Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm
    [11]
    Stock H W, Haase W. Navier-Stokes airfoil computations with eN transition prediction including transitional flow regions[J]. AIAA Journal, 2000, 38(11): 2059-2066. doi: 10.2514/2.893
    [12]
    朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2): 123-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802012.htm

    Zhu Z, Song W P, Han Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 123-134 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802012.htm
    [13]
    Crouch J D, Crouch I W, Ng L L. Transition prediction for three-dimensional boundary layers in computational fluid dynamics applications[J]. AIAA Journal, 2002, 40(8): 1536-1541. doi: 10.2514/2.1850
    [14]
    安复兴, 李磊, 苏伟, 等. 高超声速飞行器气动设计中的若干关键问题[J]. 中国科学: 物理学、力学、天文学, 2021, 51(10): 104702. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202110003.htm

    An F X, Li L, Su W, et al. Key issues in hypersonic vehicle aerodynamic design[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(10): 104702 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202110003.htm
    [15]
    Jaffe N A, Okamura T T, Smith A M. Determination of spatial amplification factors and their application to predicting transition[J]. AIAA Journal, 1970, 8(2): 301-308. doi: 10.2514/3.5660
    [16]
    Malik M. Prediction and control of transition in hypersonic boundary layers[C]. 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference, Honolulu: AIAA, 1987.
    [17]
    Chen F J, Malik M R, Beckwith I E. Boundary-layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6): 687-693. doi: 10.2514/3.10166
    [18]
    Horvath T J, Berry S A, Hollis B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels[R]. AIAA 2002-2743, 2002.
    [19]
    Marineau E C, Moraru C G, Lewis D R, et al. Mach 10 boundary layer transition experiments on sharp and blunted cones[R]. AIAA 2014-3108, 2014.
    [20]
    Goparaju H, Unnikrishnan S, Gaitonde D V. Effects of nose bluntness on hypersonic boundary-layer receptivity and stability[J]. Journal of Spacecraft and Rockets, 2021, 58(3): 668-684. doi: 10.2514/1.A34829
    [21]
    Liang X, Li X L, Fu D X, et al. Effects of wall temperature on boundary layer stability over a blunt cone at Mach 7.99[J]. Computers & Fluids, 2010, 39(2): 359-371.
    [22]
    Balakumar P. Receptivity of hypersonic boundary layers to acoustic and vortical disturbances (invited)[R]. AIAA 2015-2473, 2015.
    [23]
    Wan B B, Luo J S, Su C H. Response of a hypersonic blunt cone boundary layer to slow acoustic waves with assessment of various routes of receptivity[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1643-1660. doi: 10.1007/s10483-018-2391-6
    [24]
    Zhang Y M, Zhou H. Verification of parabolized stability equations for its application to compressible boundary layers[J]. Applied Mathematics and Mechanics, 2007, 28(8): 987-998. doi: 10.1007/s10483-007-0801-3
    [25]
    Zhang Y M, Zhou H. PSE as applied to problems of transition in compressible boundary layers[J]. Applied Mathematics and Mechanics, 2008, 29(7): 833-840. doi: 10.1007/s10483-008-0701-8
    [26]
    Kara K, Balakumar P, Kandil O A. Effects of nose bluntness on hypersonic boundary-layer receptivity and stability over cones[J]. AIAA Journal, 2011, 49(12): 2593-2606. doi: 10.2514/1.J050032
    [27]
    Klaimon J H. Bow shock correlation for slightly blunted cones[J]. AIAA Journal, 1963, 1(2): 490-491. doi: 10.2514/3.1581
    [28]
    万兵兵, 罗纪生. 超声速绕钝板熵层不稳定性的研究[J]. 空气动力学学报, 2018, 36(2): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802009.htm

    Wan B B, Luo J S. Entropy-layer instability over a blunt plate in supersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 247-253 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802009.htm
    [29]
    苏彩虹. 高超声速边界层转捩预测中的关键科学问题——感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报, 2020, 38(2): 355-367. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002019.htm

    Su C H. Progress in key scientific problems of hypersonic boundary-layer transition prediction: receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2): 355-367 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202002019.htm
    [30]
    Su C H, Zhou H. Stability analysis and transition prediction of hypersonic boundary layer over a blunt cone with small nose bluntness at zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(5): 563-572. doi: 10.1007/s10483-007-0501-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (115) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return