Citation: | HUANG Chu-yun, CAI Qing-dong. Transformation From Octree Grid to Unstructured Hybrid Grid[J]. PHYSICS OF GASES, 2023, 8(1): 68-78. DOI: 10.19527/j.cnki.2096-1642.0970 |
[1] |
Baker T J. Mesh generation: art or science[J]. Progress in Aerospace Sciences, 2005, 41(1): 29-63. DOI: 10.1016/j.paerosci.2005.02.002
|
[2] |
Masters J, Woeber C. Meshing, visualization community works on CFD Vision 2030[R]. Aerospace America, 2018, 56: 26.
|
[3] |
张来平, 赫新, 常兴华, 等. 复杂外形静动态混合网格生成技术研究新进展[J]. 气体物理, 2016, 1(1): 42-61. http://qtwl.xml-journal.net/article/id/fbf4084f-a7ea-4995-b6df-df4f05f62783
Zhang L P, He X, Chang X H, et al. Recent progress of static and dynamic hybrid grid generation techniques over complex geometries[J]. Physics of Gases, 2016, 1(1): 42-61(in Chinese). http://qtwl.xml-journal.net/article/id/fbf4084f-a7ea-4995-b6df-df4f05f62783
|
[4] |
Si H. TetGen, a delaunay-based quality tetrahedral mesh generator [J]. ACM Transactions on Mathematical Soft-ware, 2015, 41(2): 11.
|
[5] |
Roberts K J, Pringle W J, Westerink J J. OceanMesh 2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling[J]. Geoscientific Model Development, 2019, 12(5): 1847-1868. DOI: 10.5194/gmd-12-1847-2019
|
[6] |
曹建. 适应复杂外形粘性流动模拟的混合网格生成算法[D]. 杭州: 浙江大学, 2013.
Cao J. Hybrid mesh generation for viscous flow simulations configured with complex geometries[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
|
[7] |
Vachhani S, Kleinstreuer C. Comparison of micron-and nano-particle transport in the human nasal cavity with a focus on the olfactory region[J]. Computers in Biology and Medicine, 2021, 128 : 104103. DOI: 10.1016/j.compbiomed.2020.104103
|
[8] |
Khan N B, Ibrahim Z, Nguyen L T, et al. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re=104) and low mass ratio using the RANS code[J]. PLoS One, 2017, 12(10): e0185832. DOI: 10.1371/journal.pone.0185832
|
[9] |
Wang G, Mian H H, Liu Y, et al. A hybrid implicit scheme for solving Navier-Stokes equations[J]. International Journal for Numerical Methods in Fluids, 2015, 78(6): 319-334. DOI: 10.1002/fld.4019
|
[10] |
常兴华, 王年华, 马戎, 等. 并行重叠/变形混合网格生成技术及其应用[J]. 气体物理, 2019, 4(6): 12-21. DOI: 10.19527/j.cnki.2096-1642.0760
Chang X H, Wang N H, Ma R, et al. Dynamic hybrid mesh generator coupled with overset and deformation in parallel environment[J]. Physics of Gases, 2019, 4(6): 12-21(in Chinese). DOI: 10.19527/j.cnki.2096-1642.0760
|
[11] |
Sun L, Zhao G Q, Yeh G T. 3D hybrid mesh generation with an improved vertical stretch algorithm for geometric models with pinch-out features[J]. Computational Geosciences, 2021, 25(1): 575-599. DOI: 10.1007/s10596-020-10026-x
|
[12] |
Yerry M A, Shephard M S. Automatic three-dimensional mesh generation by the modified-octree technique[J]. International Journal for Numerical Methods in Enginee-ring, 1984, 20(11): 1965-1990. DOI: 10.1002/nme.1620201103
|
[13] |
Buratynski E K. A fully automatic three-dimensional mesh generator for complex geometries[J]. International Journal for Numerical Methods in Engineering, 1990, 30: 931-952.
|
[14] |
Popinet S. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2): 572-600.
|
[15] |
WU J, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school[J]. Science in China Series E: Technological Sciences, 2009, 52(3): 658-669.
|
[16] |
Xin Z Q, WU C J. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish[J]. Science China-Physics, Mechanics and Astronomy, 2012, 55(2): 272-283.
|