Citation: | TANG Yi-qi, SHI Chong-guang, ZHENG Xiao-gang, et al. Design and Analysis of Two-Stage Compression Internal Flowfield Based on Method of Curved-Shock Characteristics[J]. PHYSICS OF GASES, 2022, 7(6): 42-54. DOI: 10.19527/j.cnki.2096-1642.0954 |
[1] |
Heiser W H, Pratt D T, Daniel H D, et al. Hypersonic airbreathing propulsion[M]. Washington DC: American Institute of Aeronautics and Astronautics Inc, 1994.
|
[2] |
张建东, 王占学, 刘增文, 等. 超声速二元进气道流场特性分析[J]. 空气动力学学报, 2011, 29(1): 73-77. DOI: 10.3969/j.issn.0258-1825.2011.01.012
Zhang J D, Wang Z X, Liu Z W, et al. Characteristic analysis of supersonic 2D inlet flow field[J]. Acta Aerodynamica Sinica, 2011, 29(1): 73-77(in Chinese). DOI: 10.3969/j.issn.0258-1825.2011.01.012
|
[3] |
Colville J, Starkey R, Lewis M. Extending the flight Mach number of the SR-71 inlet[C]. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005: 3284.
|
[4] |
金志光, 张堃元, 刘媛. 马赫数4~7的高超侧压式进气道气动设计与性能[J]. 航空动力学报, 2011, 26(6): 1201-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201106004.htm
Jin Z G, Zhang K Y, Liu Y. Design and performance investigation of sidewall compression scramjet inlets operating from Mach 4 to Mach 7[J]. Journal of Aerospace Power, 2011, 26(6): 1201-1208(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201106004.htm
|
[5] |
Busemann A. Die achsensymmetrische kegelige Überschallströmung[J]. Luftfahrtforschung, 1942, 19(4): 137-144.
|
[6] |
Mölder S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7): 1252-1255. DOI: 10.2514/3.4179
|
[7] |
Dsouza N, Molder S. Applicability of hypersonic small-disturbance theory and similitude to internal hypersonic conical flows[J]. Journal of Spacecraft and Rockets, 1970, 7(2): 149-154. DOI: 10.2514/3.29890
|
[8] |
Wie D V, Mölder S. Applications of Busemann inlet designs for flight at hypersonic speeds[C]. Aerospace Design Conference. 1992.
|
[9] |
岳连捷, 肖雅彬, 陈立红, 等. 高超声速流线追踪进气道基准流场设计[C]. 第二届高超声速科技学术会议, 黄山, 2009.
YueL J, Xiao Y B, Chen L H, et al. Design of base flow for streamline-traced hypersonic inlet[C]. The 2nd Academic Conference on Hypersonic Technology, Huang-shan, 2009.
|
[10] |
郭军亮, 黄国平, 尤延铖, 等. 改善内乘波式进气道出口均匀性的内收缩基本流场研究[J]. 宇航学报, 2009, 30(5): 1934-1940, 1952. DOI: 10.3873/j.issn.1000-1328.2009.05.032
Guo J L, Huang G P, You Y C, et al. Study of internal compression flowfield for improving the outflow uniformity of internal waverider inlet[J]. Journal of Astronautics, 2009, 30(5): 1934-1940, 1952(in Chinese). DOI: 10.3873/j.issn.1000-1328.2009.05.032
|
[11] |
Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power, 2006, 22(4): 913-920. DOI: 10.2514/1.17874
|
[12] |
南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201103008.htm
Nan X J, Zhang K Y, Jin Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201103008.htm
|
[13] |
Nan X, Zhang K. Numerical and experimental investiga-tion on hypersonic inward turning inlets with basic flowfiled using arc tangent curve law of pressure rise[C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011: 2270.
|
[14] |
南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6): 988-996. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106005.htm
Nan X J, Zhang K Y, Jin Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106005.htm
|
[15] |
朱伟, 张堃元, 南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术, 2013, 34(4): 433-438. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304002.htm
Zhu W, Zhang K Y, Nan X J. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Propulsion Technology, 2013, 34(4): 433-438(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304002.htm
|
[16] |
李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201503006.htm
Li Y Z, Zhang K Y, Zhu W, et al. Design for inward turning basic flowfield with controlled center-body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3): 563-570(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201503006.htm
|
[17] |
Malo-Molina F, Gaitonde D, Kutschenreuter P. Num-erical investigation of an innovative inward turning inlet[C]. 17th AIAA Computational Fluid Dynamics Conference, 2005: 4871.
|
[18] |
Malo-Molina F, Ebrahimi H, Ruffin S. Analysis of an innovative inward turning inlet using an air-JP8 combustion mixture at Mach 7[C]. 36th AIAA Fluid Dynamics Conference and Exhibit, 2006: 3041.
|
[19] |
Malo-Molina F J, Gaitonde D V, Ebrahimi H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3): 572-582.
|
[20] |
刘燚. 控制出口马赫数分布的高超声速压缩通道反设计[D]. 南京: 南京航空航天大学, 2012.
Liu Y. Inverse design of hypersonic air compression tube for generating desirable Mach profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
|
[21] |
方兴军. 控制出口速度分布的超声速内流通道反设计[D]. 南京: 南京航空航天大学, 2011.
Fang X J. Inverse design of supersonic internal flow path based on given outflow velocity profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
|
[22] |
韩伟强, 朱呈祥, 尤延铖, 等. 给定下游边界的超声速流场逆向求解方法[J]. 推进技术, 2016, 37(4): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201604004.htm
Han W Q, Zhu C X, You Y C, et al. An inverse method for supersonic flowfield with given downstream boundary[J]. Journal of Propulsion Technology, 2016, 37(4): 624-631(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201604004.htm
|
[23] |
卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201503006.htm
Wei F, He X Z, He Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201503006.htm
|
[24] |
Kothari A, Tarpley C, McLaughlin T, et al. Hypersonic vehicle design using inward turning flow fields[C]. 32nd Joint Propulsion Conference and Exhibit, 1996: 2552.
|
[25] |
Smart M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416.
|
[26] |
Smart M K. Experimental testing of a hypersonic inlet with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 2001, 17(2): 276-283.
|
[27] |
谭慧俊, 黄河峡, 卜焕先, 等. 一种高超声速内转式进气道的内通道设计方法[P]. 中国, 105205220A, 2015-12-30.
|
[28] |
Gollan R J, Ferlemann P G, et al. Investigation of REST-class hypersonic inlet designs[C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011: 2254.
|
[29] |
Elvin J D. Integrated inward turning inlets and nozzles for hypersonic air vehicles: US 2007/0187550A1[P]. 2007-08-16.
|
[30] |
尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学E辑: 技术科学, 2009, 39(8): 1483-1494. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200908016.htm
You Y C, Liang D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlets[J]. Science in China Series E: Technologica, 2009, 39(8): 1483-1494(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200908016.htm
|
[31] |
尤延铖, 黄国平, 郭军亮, 等. 基于任意激波形状的内乘波式高超声速进气道及设计方法[P]. 中国, 101392685, 2009-03-25.
|
[32] |
Xiao Y, Yue L, Ma S, et al. Design methodology for shape transition inlets based on constant contraction of discrete streamtubes[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(8): 1496-1506.
|
[33] |
Shi C, Zhu C, You Y, et al. Method of curved-shock characteristics with application to inverse design of supersonic flowfields[J]. Journal of Fluid Mechanics, 2021, 920.
|
[34] |
Mölder S. Curved shock theory[J]. Shock Waves, 2016, 26(4): 337-353.
|
[35] |
Shi C, Han W, Deiterding R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics, 2020, 891.
|