Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
TANG Yi-qi, SHI Chong-guang, ZHENG Xiao-gang, et al. Design and Analysis of Two-Stage Compression Internal Flowfield Based on Method of Curved-Shock Characteristics[J]. PHYSICS OF GASES, 2022, 7(6): 42-54. DOI: 10.19527/j.cnki.2096-1642.0954
Citation: TANG Yi-qi, SHI Chong-guang, ZHENG Xiao-gang, et al. Design and Analysis of Two-Stage Compression Internal Flowfield Based on Method of Curved-Shock Characteristics[J]. PHYSICS OF GASES, 2022, 7(6): 42-54. DOI: 10.19527/j.cnki.2096-1642.0954

Design and Analysis of Two-Stage Compression Internal Flowfield Based on Method of Curved-Shock Characteristics

More Information
  • Received Date: September 13, 2021
  • Revised Date: October 14, 2021
  • The inlet is one of the key components of the supersonic vehicle. The core of its design is the determination of the inviscid supersonic flowfield. The wave structure directly determines the flowfield performance. Considering the practical application, the inverse design of the supersonic flowfield based on given shocks is of vital importance. The traditional flowfield with a single incident shockwave is simple but its compression efficiency is not high. The method of characteristics (MOC) can not obtain high-order aerodynamic parameters. To expand design patterns, this paper firstly used the method of curved-shock characteristics to illustrate different unit processes of the internal supersonic flowfield. Then the concept and inverse design method of a two-stage compression internal flowfield with pre-assigned incident and reflected shocks were proposed. The corresponding flowfield designed on the basis of this method is in great agreement with numerical results. The dual incident shock waves can improve the compression efficiency and shorten the compression length. This method can realize the controllable distribution of the wave structure and outlet parameters simultaneously. Even under the conditions of the non-uniform incoming flows, the corresponding profile can be obtained. With given shocks, a series of axisymmetric flowfields with a centerbody were solved and analyzed. The influence of the incident and reflected shock angles on aerodynamic and geometric parameters of the flowfield was discussed. The accuracy and efficiency of the method of curved-shock characteristics make it a good candidate didate for the inverse design of plane/axisymmetric supersonic flowfield.
  • [1]
    Heiser W H, Pratt D T, Daniel H D, et al. Hypersonic airbreathing propulsion[M]. Washington DC: American Institute of Aeronautics and Astronautics Inc, 1994.
    [2]
    张建东, 王占学, 刘增文, 等. 超声速二元进气道流场特性分析[J]. 空气动力学学报, 2011, 29(1): 73-77. DOI: 10.3969/j.issn.0258-1825.2011.01.012

    Zhang J D, Wang Z X, Liu Z W, et al. Characteristic analysis of supersonic 2D inlet flow field[J]. Acta Aerodynamica Sinica, 2011, 29(1): 73-77(in Chinese). DOI: 10.3969/j.issn.0258-1825.2011.01.012
    [3]
    Colville J, Starkey R, Lewis M. Extending the flight Mach number of the SR-71 inlet[C]. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005: 3284.
    [4]
    金志光, 张堃元, 刘媛. 马赫数4~7的高超侧压式进气道气动设计与性能[J]. 航空动力学报, 2011, 26(6): 1201-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201106004.htm

    Jin Z G, Zhang K Y, Liu Y. Design and performance investigation of sidewall compression scramjet inlets operating from Mach 4 to Mach 7[J]. Journal of Aerospace Power, 2011, 26(6): 1201-1208(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201106004.htm
    [5]
    Busemann A. Die achsensymmetrische kegelige Überschallströmung[J]. Luftfahrtforschung, 1942, 19(4): 137-144.
    [6]
    Mölder S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7): 1252-1255. DOI: 10.2514/3.4179
    [7]
    Dsouza N, Molder S. Applicability of hypersonic small-disturbance theory and similitude to internal hypersonic conical flows[J]. Journal of Spacecraft and Rockets, 1970, 7(2): 149-154. DOI: 10.2514/3.29890
    [8]
    Wie D V, Mölder S. Applications of Busemann inlet designs for flight at hypersonic speeds[C]. Aerospace Design Conference. 1992.
    [9]
    岳连捷, 肖雅彬, 陈立红, 等. 高超声速流线追踪进气道基准流场设计[C]. 第二届高超声速科技学术会议, 黄山, 2009.

    YueL J, Xiao Y B, Chen L H, et al. Design of base flow for streamline-traced hypersonic inlet[C]. The 2nd Academic Conference on Hypersonic Technology, Huang-shan, 2009.
    [10]
    郭军亮, 黄国平, 尤延铖, 等. 改善内乘波式进气道出口均匀性的内收缩基本流场研究[J]. 宇航学报, 2009, 30(5): 1934-1940, 1952. DOI: 10.3873/j.issn.1000-1328.2009.05.032

    Guo J L, Huang G P, You Y C, et al. Study of internal compression flowfield for improving the outflow uniformity of internal waverider inlet[J]. Journal of Astronautics, 2009, 30(5): 1934-1940, 1952(in Chinese). DOI: 10.3873/j.issn.1000-1328.2009.05.032
    [11]
    Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake[J]. Journal of Propulsion and Power, 2006, 22(4): 913-920. DOI: 10.2514/1.17874
    [12]
    南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201103008.htm

    Nan X J, Zhang K Y, Jin Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201103008.htm
    [13]
    Nan X, Zhang K. Numerical and experimental investiga-tion on hypersonic inward turning inlets with basic flowfiled using arc tangent curve law of pressure rise[C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011: 2270.
    [14]
    南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6): 988-996. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106005.htm

    Nan X J, Zhang K Y, Jin Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 988-996(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201106005.htm
    [15]
    朱伟, 张堃元, 南向军. 壁面马赫数分布规律可控的新型内收缩基准流场设计方法[J]. 推进技术, 2013, 34(4): 433-438. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304002.htm

    Zhu W, Zhang K Y, Nan X J. Investigation on basic flowfield with controlled Mach number gradient for hypersonic inward turning inlets[J]. Journal of Propulsion Technology, 2013, 34(4): 433-438(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201304002.htm
    [16]
    李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201503006.htm

    Li Y Z, Zhang K Y, Zhu W, et al. Design for inward turning basic flowfield with controlled center-body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3): 563-570(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201503006.htm
    [17]
    Malo-Molina F, Gaitonde D, Kutschenreuter P. Num-erical investigation of an innovative inward turning inlet[C]. 17th AIAA Computational Fluid Dynamics Conference, 2005: 4871.
    [18]
    Malo-Molina F, Ebrahimi H, Ruffin S. Analysis of an innovative inward turning inlet using an air-JP8 combustion mixture at Mach 7[C]. 36th AIAA Fluid Dynamics Conference and Exhibit, 2006: 3041.
    [19]
    Malo-Molina F J, Gaitonde D V, Ebrahimi H B, et al. Three-dimensional analysis of a supersonic combustor coupled to innovative inward-turning inlets[J]. AIAA Journal, 2010, 48(3): 572-582.
    [20]
    刘燚. 控制出口马赫数分布的高超声速压缩通道反设计[D]. 南京: 南京航空航天大学, 2012.

    Liu Y. Inverse design of hypersonic air compression tube for generating desirable Mach profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [21]
    方兴军. 控制出口速度分布的超声速内流通道反设计[D]. 南京: 南京航空航天大学, 2011.

    Fang X J. Inverse design of supersonic internal flow path based on given outflow velocity profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
    [22]
    韩伟强, 朱呈祥, 尤延铖, 等. 给定下游边界的超声速流场逆向求解方法[J]. 推进技术, 2016, 37(4): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201604004.htm

    Han W Q, Zhu C X, You Y C, et al. An inverse method for supersonic flowfield with given downstream boundary[J]. Journal of Propulsion Technology, 2016, 37(4): 624-631(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201604004.htm
    [23]
    卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201503006.htm

    Wei F, He X Z, He Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201503006.htm
    [24]
    Kothari A, Tarpley C, McLaughlin T, et al. Hypersonic vehicle design using inward turning flow fields[C]. 32nd Joint Propulsion Conference and Exhibit, 1996: 2552.
    [25]
    Smart M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416.
    [26]
    Smart M K. Experimental testing of a hypersonic inlet with rectangular to elliptical shape transition[J]. Journal of Propulsion and Power, 2001, 17(2): 276-283.
    [27]
    谭慧俊, 黄河峡, 卜焕先, 等. 一种高超声速内转式进气道的内通道设计方法[P]. 中国, 105205220A, 2015-12-30.
    [28]
    Gollan R J, Ferlemann P G, et al. Investigation of REST-class hypersonic inlet designs[C]. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011: 2254.
    [29]
    Elvin J D. Integrated inward turning inlets and nozzles for hypersonic air vehicles: US 2007/0187550A1[P]. 2007-08-16.
    [30]
    尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学E辑: 技术科学, 2009, 39(8): 1483-1494. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200908016.htm

    You Y C, Liang D W. Design concept of three-dimensional section controllable internal waverider hypersonic inlets[J]. Science in China Series E: Technologica, 2009, 39(8): 1483-1494(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200908016.htm
    [31]
    尤延铖, 黄国平, 郭军亮, 等. 基于任意激波形状的内乘波式高超声速进气道及设计方法[P]. 中国, 101392685, 2009-03-25.
    [32]
    Xiao Y, Yue L, Ma S, et al. Design methodology for shape transition inlets based on constant contraction of discrete streamtubes[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(8): 1496-1506.
    [33]
    Shi C, Zhu C, You Y, et al. Method of curved-shock characteristics with application to inverse design of supersonic flowfields[J]. Journal of Fluid Mechanics, 2021, 920.
    [34]
    Mölder S. Curved shock theory[J]. Shock Waves, 2016, 26(4): 337-353.
    [35]
    Shi C, Han W, Deiterding R, et al. Second-order curved shock theory[J]. Journal of Fluid Mechanics, 2020, 891.
  • Cited by

    Periodical cited type(2)

    1. Tianyu Gong,Yaosong Long,Zhongtao Cheng,Yiqing Li. Recent development of integrated design and improving methods of waverider and inlet. Advances in Aerodynamics. 2024(04): 5-28 .
    2. 施崇广,汤祎麒,程剑锐,张涛,朱呈祥,尤延铖. 高阶弯曲激波理论及其典型应用研究. 空天技术. 2022(01): 27-38 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (165) PDF downloads (21) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return