Citation: | WANG Bing, FAN Wen-qi, XU Sheng, et al. Recent Research Progress on the Mechanism, Modelling, and Algorithm of Two-phase Interfacial Flow and Reacting Flow under Extreme Conditions[J]. PHYSICS OF GASES, 2022, 7(6): 1-32. DOI: 10.19527/j.cnki.2096-1642.0941 |
[1] |
Perurena J B, Asma C O, Theunissen R, et al. Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow[J]. Experiments in Fluids, 2009, 46(3): 403-417. DOI: 10.1007/s00348-008-0566-5
|
[2] |
Theofanous T G. Aerobreakup of Newtonian and viscoelastic liquids[J]. Annual Review of Fluid Mechanics, 2011, 43: 661-690. DOI: 10.1146/annurev-fluid-122109-160638
|
[3] |
Igra D, Takayama K. Investigation of aerodynamic breakup of a cylindrical water droplet[J]. Atomization and Sprays, 2001, 11(2): 167-185.
|
[4] |
Meng J C, Colonius T. Numerical simulation of the aerobreakup of a water droplet[J]. Journal of Fluid Mechanics, 2018, 835: 1108-1135. DOI: 10.1017/jfm.2017.804
|
[5] |
Ohl S W, Klaseboer E, Khoo B C. Bubbles with shock waves and ultrasound: a review[J]. Interface Focus, 2015, 5(5): 20150019. DOI: 10.1098/rsfs.2015.0019
|
[6] |
Sembian S, Liverts M, Tillmark N, et al. Plane shock wave interaction with a cylindrical water column[J]. Physics of Fluids, 2016, 28(5): 056102. DOI: 10.1063/1.4948274
|
[7] |
Meng J C, Colonius T. Numerical simulations of the early stages of high-speed droplet breakup[J]. Shock Waves, 2015, 25(4): 399-414. DOI: 10.1007/s00193-014-0546-z
|
[8] |
Supponen O, Obreschkow D, Tinguely M, et al. Scaling laws for jets of single cavitation bubbles[J]. Journal of Fluid Mechanics, 2016, 802: 263-293. DOI: 10.1017/jfm.2016.463
|
[9] |
Ohl C D, Ikink R. Shock-wave-induced jetting of micron-size bubbles[J]. Physical Review Letters, 2003, 90(21): 214502. DOI: 10.1103/PhysRevLett.90.214502
|
[10] |
Magaletti F, Gallo M, Marino L, et al. Shock-induced collapse of a vapor nanobubble near solid boundaries[J]. International Journal of Multiphase Flow, 2016, 84: 34-45. DOI: 10.1016/j.ijmultiphaseflow.2016.02.012
|
[11] |
Saurel R, Pantano C. Diffuse-interface capturing methods for compressible two-phase flows[J]. Annual Review of Fluid Mechanics, 2018, 50(1): 105-130. DOI: 10.1146/annurev-fluid-122316-050109
|
[12] |
Allaire G, Clerc S, Kokh S. A five-equation model for the simulation of interfaces between compressible fluids[J]. Journal of Computational Physics, 2002, 181(2): 577-616. DOI: 10.1006/jcph.2002.7143
|
[13] |
张文斌. 基于欧拉方程的激波与气泡/液滴相互作用算法与规律研究[D]. 北京: 清华大学, 2015.
Zhang W B. Algorithm and dynamics study of interaction between shockwave and bubble/droplet based on Euler equation[D]. Beijing: Tsinghua University, 2015(in Chinese).
|
[14] |
项高明. 激波与气液两相界面相互作用规律的数值模拟研究[D]. 北京: 清华大学, 2019.
Xiang G M. Numerical investigation on the shock wave interaction with gas-liquid two-phase interface[D]. Beijing: Tsinghua University, 2019(in Chinese).
|
[15] |
吴汪霞. 高速撞壁液滴内在瞬变特征及其规律的数值模拟研究[D]. 北京: 清华大学, 2019.
Wu W X. Numerical study for transient characteristics and physical mechanisms in high-speed impinging droplets[D]. Beijing: Tsinghua University, 2019(in Chinese).
|
[16] |
Wang B, Xiang G M, Hu X Y. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows[J]. International Journal of Multiphase Flow, 2018, 104: 20-31. DOI: 10.1016/j.ijmultiphaseflow.2018.03.013
|
[17] |
Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. DOI: 10.1006/jcph.1996.0130
|
[18] |
Wu W X, Xiang G M, Wang B. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects[J]. Journal of Fluid Mechanics, 2018, 857: 851-877. DOI: 10.1017/jfm.2018.753
|
[19] |
Xiang G M, Wang B. Theoretical and numerical studies on shock reflection at water/air two-phase interface: fast-slow case[J]. International Journal of Multiphase Flow, 2019, 114: 219-228. DOI: 10.1016/j.ijmultiphaseflow.2019.03.002
|
[20] |
Wu W X, Wang B, Xiang G M. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis[J]. Journal of Fluid Mechanics, 2019, 864: 1058-1087. DOI: 10.1017/jfm.2019.55
|
[21] |
Field J E, Dear J P, Ogren J E. The effects of target compliance on liquid drop impact[J]. Journal of Applied Physics, 1989, 65(2): 533-540. DOI: 10.1063/1.343136
|
[22] |
Rein M. Phenomena of liquid drop impact on solid and liquid surfaces[J]. Fluid Dynamics Research, 1993, 12(2): 61-93. DOI: 10.1016/0169-5983(93)90106-K
|
[23] |
Heymann F J. High-speed impact between a liquid drop and a solid surface[J]. Journal of Applied Physics, 1969, 40(13): 5113-5122. DOI: 10.1063/1.1657361
|
[24] |
Wu W X, Liu Q Q, Wang B. Curved surface effect on high-speed droplet impingement[J]. Journal of Fluid Mechanics, 2021, 909: A7.
|
[25] |
Xiang G M, Wang B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity[J]. Journal of Fluid Mechanics, 2017, 825: 825-852. DOI: 10.1017/jfm.2017.403
|
[26] |
Ren Z X, Wang B, Xie Q F, et al. Thermal auto-ignition in high-speed droplet-laden mixing layers[J]. Fuel, 2017, 191: 176-189. DOI: 10.1016/j.fuel.2016.11.073
|
[27] |
任兆欣. 超声速混合层液雾燃烧特性的数值模拟研究[D]. 北京: 清华大学, 2017.
Ren Z X. Numerical investigation of spray combustion characteristics in supersonic mixing layer[D]. Beijing: Tsinghua University, 2017(in Chinese).
|
[28] |
Zhang Y L, Wang B, Zhang H Q, et al. Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves[J]. Journal of Propulsion and Power, 2015, 31(1): 156-169. DOI: 10.2514/1.B35423
|
[29] |
Wang B, Wei W, Ma S N, et al. Construction of one-step H2/O2 reaction mechanism for predicting ignition and its application in simulation of supersonic combustion[J]. International Journal of Hydrogen Energy, 2016, 41(42): 19191-19206. DOI: 10.1016/j.ijhydene.2016.09.010
|
[30] |
Wang B, Wei W, Zhang Y L, et al. Passive scalar mixing in Mc < 1 planar shear layer flows[J]. Computers and Fluids, 2015, 123: 32-43. DOI: 10.1016/j.compfluid.2015.09.006
|
[31] |
Wang B, Ren Z X, Zhang H Q. Stochastic separated flow models with applications in numerical computations of supersonic particle-laden turbulent flows[J]. Advances in Mechanical Engineering, 2015, 7(8), doi: 10.1177/1687814015601335.
|
[32] |
Ren Z X, Wang B. Response of dispersed droplets to shock waves in supersonic mixing layers[J]. Advances in Mechanical Engineering, 2015, 7(6), doi: 10.1177/1687814015588492.
|
[33] |
Zhang Y L, Wang B, Zhang H Q. Ignition, flame propagation and extinction in the supersonic mixing layer flow[J]. Science China Technological Sciences, 2014, 57(11): 2256-2264. DOI: 10.1007/s11431-014-5655-5
|
[34] |
张耘隆. 超音速平面混合层燃烧的数值模拟研究[D]. 北京: 清华大学, 2014.
Zhang Y L. Numerical investigation of combustion process in supersonic planar mixing layer flows[D]. Beijing: Tsinghua University, 2014(in Chinese).
|
[35] |
Wang B, Zhang H Q, Wang X L. Evaluation of particle stochastic separated flow models via large eddy simulation[J]. International Journal of Modern Physics C, 2010, 21(7): 867-890. DOI: 10.1142/S0129183110015531
|
[36] |
王兵, 张博, 危伟, 等. TURFsim数值仿真软件[CP]. 2019.
Wang B, Zhang B, Wei W, et al. TURFsim numerical simulation software[CP]. 2019(in Chinese).
|
[37] |
张博. 贫燃预混单旋流燃烧不稳定性驱动机制的数值模拟研究[D]. 北京: 清华大学, 2020.
Zhang B. Numerical investigation of the combustion instability driving mechanism in the lean premixed swirl stabilized combustor[D]. Beijing: Tsinghua University, 2020(in Chinese).
|
[38] |
Hu X Y, Wang Q, Adams N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965. DOI: 10.1016/j.jcp.2010.08.019
|
[39] |
薛淑艳. 超音速平面混合层及其与斜激波相互作用的数值模拟研究[D]. 北京: 清华大学, 2011.
Xue S Y. Numerical investigation of supersonic plane mixing layer and its interaction with oblique shock[D]. Beijing: Tsinghua University, 2011(in Chinese).
|
[40] |
Ren Z X, Wang B, Zheng L X. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets[J]. Physics of Fluids, 2018, 30(3): 036101. DOI: 10.1063/1.5011708
|
[41] |
Ren Z X, Wang B, Zhao D, et al. Flame propagation involved in vortices of supersonic mixing layers laden with droplets: effects of ambient pressure and spray equivalence ratio[J]. Physics of Fluids, 2018, 30(10): 106107. DOI: 10.1063/1.5049840
|
[42] |
尕永婧. 液氧煤油模型发动机高频燃烧不稳定性研究[D]. 北京: 清华大学, 2012.
Ga Y J. Research on the high frequency combustion instability in the model of LOX/kerosene engine[D]. Beijing: Tsinghua University, 2012(in Chinese).
|