Supervised by: China Aerospace Science and Technology Corporation
Sponsored by: China Academy of Aerospace Aerodynamics
Chinese Society of Astronautics
China Aerospace Publishing House Co., LTD
Volume 6 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
ZHANG Jing, LI Hua-guang, ZHENG Hong-tao, TANG Peng, CAI Qiao-yan, LI Gui-cheng. Review on out of Control Inducement and Criteria of Operation and Stability of High Speed Vehicle[J]. PHYSICS OF GASES, 2021, 6(6): 1-12. doi: 10.19527/j.cnki.2096-1642.0914
Citation: ZHANG Jing, LI Hua-guang, ZHENG Hong-tao, TANG Peng, CAI Qiao-yan, LI Gui-cheng. Review on out of Control Inducement and Criteria of Operation and Stability of High Speed Vehicle[J]. PHYSICS OF GASES, 2021, 6(6): 1-12. doi: 10.19527/j.cnki.2096-1642.0914

Review on out of Control Inducement and Criteria of Operation and Stability of High Speed Vehicle

doi: 10.19527/j.cnki.2096-1642.0914
  • Received Date: 23 Feb 2021
  • Revised Date: 07 Jul 2021
  • The confusion faced by the high speed aircraft design, such as static stability, directional control, three channel coupling and safety limits, was introduced at the beginning of the paper. On the basis of combing the causes of high speed aircraft out of control, a series of operation and stability criteria suitable for aircraft design have been summarized in the paper. These criteria include lateral/directional aerodynamic static stability, dynamic directional stability parameter, lateral control (or aileron alone) departure parameter, Weissman criterion plane, lateral-directional stability dominant parameter and so on. Such criteria can not only predict the quality of aerodynamic layout and its influence on operation and stability characteristics in the early stage of aircraft design, but also can help engineers to improve the aerodynamic layout to get better performance of aircrafts. The control resources related to aircraft layout can be forecasted by the criteria, which help the aircraft cope with the influence of coupling reasonably. Finally, these criteria can be used to analyze the stability in the flight process and the rationality of the control strategy after the design.

     

  • loading
  • [1]
    Phillips W H. Effect of steady rolling on longitudinal and directional stability[R]. NACA-TN-1627, 1948.
    [2]
    祝立国, 赵俊波, 叶友达. 高速飞行器耦合失稳分析及应用[M]. 北京: 国防工业出版社, 2015: 1-8.

    Zhu L G, Zhao J B, Ye Y D. Coupling departure analysis and applications of high speed aircrafts[M]. Beijing: National Defense Industry Press, 2015: 1-8(in Chinese).
    [3]
    蔡巧言, 杜涛, 朱广生. 新型高超声速飞行器的气动设计技术探讨[J]. 宇航学报, 2009, 30(6): 2086-2091. doi: 10.3873/j.issn.1000-1328.2009.06.006

    Cai Q Y, Du T, Zhu G S. Discussion on aerodynamiac design technology of new high speed aircraft[J]. Journal of Astronautics, 2009, 30(6): 2086-2091(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.006
    [4]
    包为民. 航天飞行器控制技术研究现状与发展趋势[J]. 自动化学报, 2013, 39(6): 697-702.

    Bao W M. Present situation and development tendency of aerospace control techniques[J]. Acta Automatica Sinica, 2013, 39(6): 697-702(in Chinese).
    [5]
    张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(1): 201410.

    Zhang L P, Ma R, Chang X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(1): 201410(in Chinese).
    [6]
    李锋, 杨云军, 刘周, 等. 飞行器气动/飞行/控制一体化耦合模拟技术[J]. 空气动力学学报, 2015, 33(2): 156-161. doi: 10.7638/kqdlxxb-2014.0097

    Li F, Yang Y J, Liu Z, et al. Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2): 156-161(in Chinese). doi: 10.7638/kqdlxxb-2014.0097
    [7]
    Moul M T, Paulson J W. Dynamic lateral behavior of high-performance aircraft[R]. NACA-RM-L58E16, 1958.
    [8]
    Hodgkinson J. Prediction of lateral and directional divergence at high angles of attack[R]. AIAA 71-0766, 1971.
    [9]
    Gomez A V, Curry D M, Johnston C C. Radiative, ablative, and active cooling thermal protection studies for the leading edge of a fixed-straight wing space shuttle[R]. AIAA 1971-445, 1971.
    [10]
    Weissman R. Development of design criteria for predicting departure Characteristics and spin susceptibility of fighter-type aircraft[R]. AIAA 1972-984, 1972.
    [11]
    Seltzer R M. Investigation of current and proposed aircraft departure susceptibility criteriawith application to future fighter aircraft[R]. NADC-90048-60, 1990.
    [12]
    祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022

    Zhu L G, Wang Y F, Zhuang F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.022
    [13]
    祝立国, 王永丰, 庄逢甘, 等. Weissman图的产生、发展及其在再入航天飞行器气动布局设计的应用[J]. 宇航学报, 2009, 30(1): 13-17. doi: 10.3873/j.issn.1000-1328.2009.00.003

    Zhu L G, Wang Y F, Zhuang F G, et al. The derivation, development of Weissman chart and applications on configuration design of reentry vehicle[J]. Journal of Astronautics, 2009, 30(1): 13-17(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.00.003
    [14]
    Seltzer R M, Calvert J F. Application of current departure resistance criteria to the post-stall maneuvering envelope[R]. AGARD-CP-548, 1993.
    [15]
    Day R E, Reisert D. Flight behavior of the X-2 research airplane to a Mach number of 3.20 and a geometric altitude of 126, 200 Feet[R]. NASA-TM-X-137, 1959.
    [16]
    Day R E, Fischel J. Stability and control characteristics obtained during demonstration of the Douglas X-3 research airplane[R]. NACA-RM-H55E16, 1955.
    [17]
    Weil J. Review of the X-15 program[R]. NASA-TN-D-1278, 1962.
    [18]
    Thompson M O. At the edge of space: the X-15 project[R]. NASA tmx-57072, 1961.
    [19]
    Patersen F S, Rediess H A, Weil J. "Lateral-directional control characteristics", research-airplane -committee report on the conference on the progress of the x-15 project[R]. NASA TMX 57072, 1961.
    [20]
    Petersen F S, Rediess H A, Weil J. Lateral-directional control characteristics of the X-15 airplane[R]. NASA-TM-X-726, 1962.
    [21]
    Taylor L W Jr. Analysis of a pilot airplane lateral instability experienced with the X-15 airplane[R]. NASA-TN-D-1059, 1961.
    [22]
    Weissman R. Status of design criteria for predicting departure characteristics and spin susceptibility[R]. AIAA 1974-791, 1974.
    [23]
    Weissman R. Preliminary criteria for predicting departure characteristics/spin susceptibility of fighter-type aircraft[J]. Journal of Aircraft, 1973, 10(4): 214-219. doi: 10.2514/3.60216
    [24]
    Titiriga Jr A, Ackermanm J S, Skow A M. Design technology for departure resistance of fighter aircraft[C]. Stall/Spin Problems of Military Aircraft, AGARD Conference Proceedings No. 199, June 1976.
    [25]
    Johnston D E, Mitchell D G, Myers T T. Investigation of high-angle-of-attack maneuver-limiting factors. part 1: analysis and simulation[C]. AFWAL-TR-80-3141, Pt. I, September 1980.
    [26]
    Johnston D E, Hogge J R. The effect of non-symmetric flight on aircraft high angle of attack handling qualities and departure Characteristics[R]. AIAA 1974-792, 1974.
    [27]
    Kalviste J. Aircraft stability characteristics at high angles of attack[C]. AGARD Conference Proceedings, 235, 1978.
    [28]
    Bihrle W Jr, Barnhart B, Pantason P. Static aerodynamic characteristics of a typical single-engine low-wing general aviation design for an angle-of-attack range of-8 deg to 90 deg[R]. NASA-CR-2971, 1978.
    [29]
    Pelikan R J. F/A-18 high angle of attack departure resistant criteria for control law development[R]. AIAA 1983-2126, 1983.
    [30]
    Kalviste J, Eller B. Coupled static and dynamic stability parameters[R]. AIAA 1989-3362, 1989.
    [31]
    Lee H P, Chang M, Kaiser M K. Flight dynamics and stability and control characteristics of the X-33 technology demonstrator vehicle[R]. AIAA 1998-4410, 1998.
    [32]
    Chaudhary A, Nguyen V, Tran H, et al. Dynamics and stability and control characteristics of the X-37[R]. AIAA 2001-4383, 2001.
    [33]
    Ishimoto S, Takizawa M, Suzuki H, et al. Flight control system of hypersonic flight experiment vehicle[R]. AIAA 1996-3403, 1996.
    [34]
    Inatani Y, Kawaguchi J, Yonemoto K. Status of 'HIMES' reentry flight test project[R]. AIAA 1990-5230, 1990.
    [35]
    陈功, 唐志共, 王文正, 等. Weissman准则在升力式再入飞行器设计中的应用[J]. 飞行力学, 2019, 37(3): 68-73.

    Chen G, Tang Z G, Wang W Z, et al. Application of Weissman criterion in the design of lift reentry vehicle[J]. Flight Dynamics, 2019, 37(3): 68-73(in Chinese).
    [36]
    蔡硕. 无垂尾飞行器气动布局优化与横航向稳定性分析[D]. 杭州: 浙江大学, 2018.

    Cai S. Aerodynamic shape optimization and lateral-directional stability analysis for vertical-tailless aircraft[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [37]
    曹玉腾, 王晓东, 倪少波. 再入飞行器偏离稳定判据的研究与应用[J]. 航天控制, 2012, 30(6): 7-12.

    Cao Y T, Wang X D, Ni S B. The research and application of re-entry aerocraft departure susceptibility criteria[J]. Aerospace Control, 2012, 30(6): 7-12(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (368) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return